04 December 2024

Report Holder: Frameless Hardware Company 2323 Firestone Blvd. South Gate, CA 90280

SUBJ: FRAMELESS HARDWARE COMPANY AR- ALUMINUM RAILING STAINLESS STEEL CABLE INFILL

The AR utilizes aluminum extrusions and various infills to construct building guards and rails for decks, balconies, stairs, fences and similar locations. The system is intended for interior and exterior weather exposed applications and is suitable for use in most natural environments. The system may be used for residential, commercial and industrial applications as detailed herein. The railing system can be used in level and sloped applications such as stairs and ramps. The system is an engineered system designed for the following criteria:

The design loading conditions are:

On Top Rail:

Concentrated load = 200 lbs any direction, any location

Uniform load = 50 plf, any perpendicular to rail

For installations compliant with the IRC only the 200# top rail load is applicable.

On In-fill Panels:

Concentrated load = 50# on one sf.

Distributed load = 25 psf on area of in-fill, including spaces

Wind load is insignificant compared to live loading for most picket infill guard applications. A design professional should determine if wind loading is significant for a specific application.

Refer to IBC Section 1607.9.1 for loading.

The Aluminum Guard Rail System is engineered to the following codes and standards:

2024 California Building and Residential Codes

2021 Washington Building and Residential Codes

2021 and 2024 International Building and Residential Codes

ASCE 7-16

2020 Aluminum Design Manual

Anchorage calculations are also engineered to the following codes:

2018 American Wood Council NDS

ACI 318-19

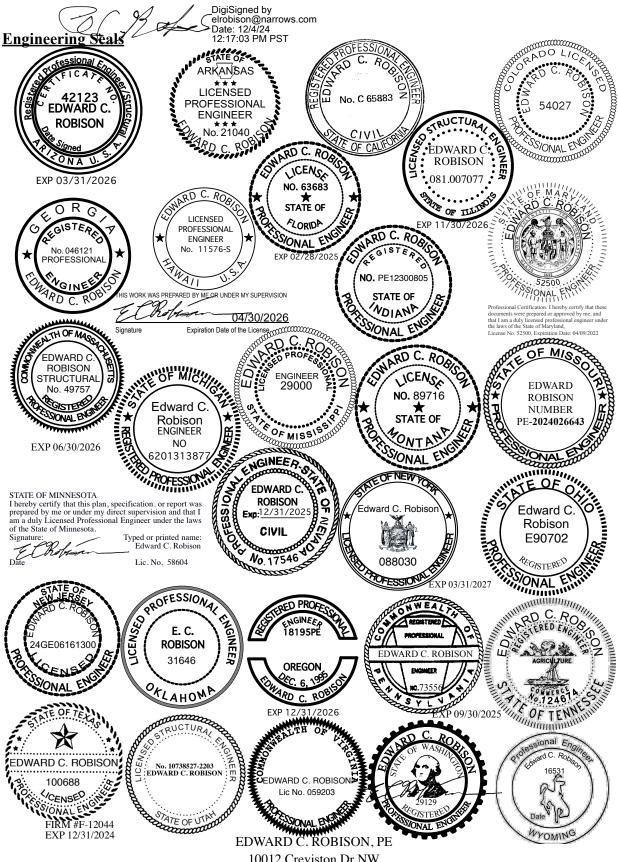

The information herein is intended to assist a qualified individual in designing a code compliant installation and may be used as a guide in performing a site specific design, It remains the responsibility of the Specifier to verify compliance with local building codes for the project specific conditions.

TABLE OF CONTENTS

Engineering Seals	3
Standard Installations	4 - 6
Load Cases	7
Cable Infill	8 - 16
Picket Spreader	17
2-3/8" Square Post	18 - 20
135° Post	21 - 22
Baseplate Connection to Post	23
Baseplate Mounted to Wood	24
Baseplate Mounted to Concrete	25 - 29
Core Mount	30 - 31
Fascia Bracket	32 - 34
Top Rails	35 - 56
Bottom Rail	57 - 60

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

10012 Creviston Dr NW Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Table 1: Standard Post Installations:

Allowable F	Allowable Post Spacings:				
	Anchorage Type	Anchorage Fasteners	Allowable Post Spacing		
	Surface mount to wood	(4) 3/8"x4" Lag Screws	72"		
	Surface mount to concrete	(4) 3/8"x3-3/4" Hilti KH-EZ (Min edge distance = 3-1/2" to nearest anchor)	72"		
Residential	Fascia bracket to wood	(4) 3/8"x4" Lag Screws	72"		
Applications	Concrete core mount	Set 4" deep in 4" square or circle core or blockout	72"		
	Direct Fascia to wood	(2) 3/8" lag screws ¹	72"		
	Direct Fascia to concrete	(2) 3/8"x3-3/4" Hilti KH-EZ	72"		
	Surface mount to wood	(4) 3/8"x4" Lag Screws	48"		
	Surface mount to concrete	(4) 3/8"x3-3/4" Hilti KH-EZ (Min edge distance = 3-1/2" to nearest anchor)	48"		
	Surface mount to concrete	(4) 3/8"x5" Hilti KH-EZ(Min edge distance = 3-1/2" to nearest anchor)	60"		
Commercial	Fascia bracket to wood	(4) 3/8"x4" Lag Screws	48"		
Applications	Concrete core mount	Set 4" deep in 4" square or circle core or blockout	60"		
	Concrete core mount	Set 4-1/2" deep in 4" square or circle core or blockout	72"		
	Direct Fascia to wood	(2) 3/8" lag screws ²	72"		
	Direct Fascia to concrete	(2) 3/8"x5" Hilti KH-EZ	72"		

¹⁾ Required lengths of screws are: 4" for 4x10 min beam size that is weather protected, 5" for 6x10 min beam size that is not protected from weather or 6x8 min beam size that is protected from water. 6" for 6x8 min beam size that is not protected from weather.

²⁾ Required lengths of screws are: 5" for 6x10 min beam size that is weather protected, 7" for 8x10 min beam size that is not protected from weather.

0.147

0.268

0.238

0.062

72

60

60

65

48

Table 2: Standard Top Rail Installations

X2

X3

X35

X4

Top Rail Engineering Properties The X-axis is taken as the horizontal axis and the Y-axis is the vertical axis. Top Rail I_x (in⁴) I_v (in⁴) M_{a,x} (in-lbs) Ma,y (in-lbs) Allowable post (Assumes max (Assumes max spacing/ allowable free allowable free Allowable span span) span) (in) **X1** 0.383 0.355 4940 5130

0.976

0.92

1.36

0.9

2480

3090

3250

2480

3530

3280

6830

11000

Table 3: Standard Cable Infill Installations:

3-3/16" on center spacing:

Cable spreader isn't required for post spacings 4' or less when cable is installed as required herein.

One cable spreader picket mid-distance between posts shall be used for post spacings above 4'.

Stainless Steel Cable Installation Parameters:					
Max spacing (in)	Max number of cables for commercial installation	Max number of cables for residential installation	Minimum cable pretension any installation (lbs)		
3-3/16"	12	10	200		
Maximum cable pretension for commercial applications (lbs)	Maximum cable pretension for residential applications (lbs)	Max cable length with minimum 125# pretension (ft)	Max post spacing with cable spreader (in)		
175	200	50	72		

Single corner posts may only be used for residential applications with a max pretension of 150# per cable. Other applications use (2) posts each corner.

LOAD CASES:

Picket rail Dead load = 5 plf for 42" rail height or less.

Loading:

Horizontal load to top rail from in-fill: 25 psf*H/2
Post moments

 $\begin{aligned} M_i &= 25 \ psf^*H/2^*S^*H = \\ &= (25/2)^*S^*H^2 \end{aligned}$

For top rail loads:

 $M_c = 200 #*H$

 $M_u = 50plf*S*H$

Wind loading on the picket railing is insignificant compared to live loading.

STAINLESS STEEL CABLE IN-FILL:

Max cable spacing (in)					
3-3/16" Maximum cable					
pretension for commercial applications (lbs)	pretension for pretension for with minimum with cable spreader commercial residential 130# pretension (ft)				
175	48				
Single corner posts may only be used for residential applications with a max pretension of 150# per cable. Other applications use (2) posts each corner.					

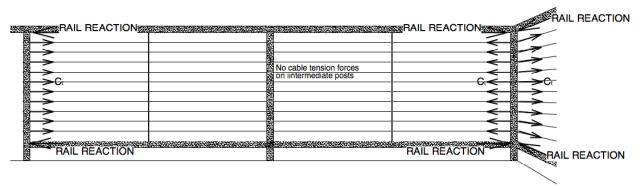
Loading on cable infill is subject to interpretation with no clear guidance from the ICC. The only live load required to be applied to the cable infill is the 50# infill load on one square foot. However, the code also requires that a 4" sphere not be able to pass through the infill. There is no code defined force to apply to the 4" sphere.

A 45° cone (or pyramid) with a 5.6# load is a criteria that has been referenced by many manufacturers of cable railing. This assumes the cone covers one ninth of the one square foot [12"x12"/(4"x4")] = 9. 50#/9 = 5.6#. The cone is chosen to have a 45° angle because that is approximately the contact angle between a 4" sphere and cables at 3-3/16" apart.

The maximum cable free span is when the posts are spaced 48" and no cable brace is used. For greater post spacings the cable spreader must be used so the span of the cable is lower. Max cable span = 48"-2.375" post wide = 45.625".

1/8" cable application

Cable with minimum pretension of 130#. Allowable total cable length is 150'.					
Cable spacing, S (in)	Cable area, A (in²)	E (psi)	Cone diameter at measurement, D (in)	Cable free span, L _f (in)	
3.1875	0.0123	28000000	4	45.625	
Cable diameter, D _c (in)	Cable spread, SP = D-S+D _c (in)	Cone angle, ø (°)	Cable vertical deflection (in), ∂_y = SP/2	Cable horizontal deflection (in), ∂_x = ∂_y *tan(ø)	
0.125	0.9375	45	0.46875	0.46875	
Minimum cable pretension, T _{pre} (lbs)	Total cable length, L (in)	Total cable deflection, $\partial = (\partial_x^2 + \partial_y^2)^{1/2}$ (in)	New cable length between supports, L _a (in) = $2((L_f/2)^2+\partial^2)^{1/2}$		
200	1800	0.6629	45.6443		
Total new cable length, L _{new} = (L- L _f +L _a) (in)	Change in cable length (in), L_{Δ} = L_a - L_f	Increase in cable tension, T_{Δ} (lbs) = $L_{\Delta}*E*A/L$	Total cable tension, $T = T_{pre}+T_{\Delta}$ (lbs)		
1800.0193	0.0193	3.7	203.7		
Cable slope, S = atan($\partial/(L_f/2)$) (°)	Force against cone per cable, P = sin(S)*T (lbs)	Total resisted load on cone = 2sinø*P (lbs)			
1.6645	5.9	8.4	≥ 5.6# OK		


Option for increased span length. 54" max span. Cable with maximum pretension of 200#. Allowable total cable length is 80'.					
Cable spacing, S (in)	Cable area, A (in²)	E (psi)	Cone diameter at measurement, D (in)	Cable free span, L _f (in)	
3.1875	0.0123	28000000	4	54	
Cable diameter, D _c (in)	Cable spread, SP = D-S+D _c (in)	Cone angle, ø (°)	Cable vertical deflection (in), ∂_y = SP/2	Cable horizontal deflection (in), ∂_x = ∂_y *tan(ø)	
0.125	0.9375	45	0.46875	0.46875	
Minimum cable pretension, T _{pre} (lbs)	Total cable length, L (in)	Total cable deflection, $\partial = (\partial_x^2 + \partial_y^2)^{1/2}$ (in)	New cable length between supports, L_a (in) = $2((L_f/2)^2+\partial^2)^{1/2}$		
200	960	0.6629	54.0163		
Total new cable length, L _{new} = (L-L _f +L _a) (in)	Change in cable length (in), L_{Δ} = L_a - L_f	Increase in cable tension, T_{Δ} (lbs) = $L_{\Delta}*E*A/L$	Total cable tension, $T = T_{pre}+T_{\Delta}$ (lbs)		
960.0163	0.0163	5.8	205.8		
Cable slope, S = atan(∂/(L _f /2)) (°)	Force against cone per cable, P = sin(S)*T (lbs)	Total resisted load on cone = 2sinø*P (lbs)			
1.4065	5.1	7.1	≥ 5.6# OK		

3/16" cable application

Cable with minimum pretension of 130#. Allowable total cable length is 80'.					
Cable spacing, S (in)	Cable area, A (in²)	E (psi)	Cone diameter at measurement, D (in)	Cable free span, L _f (in)	
3.1875	0.0196	28000000	4	45.625	
Cable diameter, D_c (in)	Cable spread, SP = D-S+D _c (in)	Cone angle, ø (°)	Cable vertical deflection (in), θ _y = SP/2	Cable horizontal deflection (in), ∂_x = ∂_y *tan(ø)	
0.1875	1	45	0.5	0.5	
Minimum cable pretension, T _{pre} (lbs)	Total cable length, L (in)	Total cable deflection, $\partial = (\partial_x^2 + \partial_y^2)^{1/2}$ (in)	New cable length between supports, L_a (in) = $2((L_f/2)^2 + \partial^2)^{1/2}$		
200	1800	0.7071	45.6469		
Total new cable length, L _{new} = (L- L _f +L _a) (in)	Change in cable length (in), $L_{\Delta} = L_a - L_f$	Increase in cable tension, T_{Δ} (lbs) = $L_{\Delta}*E*A/L$	Total cable tension, $T = T_{pre}+T_{\Delta}$ (lbs)		
1800.0219	0.0219	6.7	206.7		
Cable slope, S = atan($\partial/(L_f/2)$) (°)	Force against cone per cable, P = sin(S)*T (lbs)	Total resisted load on cone = 2sinø*P (lbs)			
1.7754	6.4	9.1	≥ 5.6# OK		

Cable with minimum pretension of 150# which can be used with corner posts in commercial settings. Allowable total cable length is 150'.					
Cable spacing, S (in)	Cable area, A (in²)	E (psi)	Cone diameter at measurement, D (in)	Cable free span, L _f (in)	
3.1875	0.0123	28000000	4	45.625	
Cable diameter, D_c (in)	Cable spread, SP = D-S+D _c (in)	Cone angle, ø (°)	Cable vertical deflection (in), ∂ _y = SP/2	Cable horizontal deflection (in), ∂_x = ∂_y *tan(ø)	
0.125	0.9375	45	0.46875	0.46875	
Minimum cable pretension, T _{pre} (lbs)	Total cable length, L (in)	Total cable deflection, $\partial = (\partial_x^2 + \partial_y^2)^{1/2}$ (in)	New cable length between supports, L_a (in) = $2((L_f/2)^2+\partial^2)^{1/2}$		
200	1800	0.6629	45.6443		
Total new cable length, L _{new} = (L- L _f +L _a) (in)	Change in cable length (in), L_{Δ} = L_a - L_f	Increase in cable tension, T_{Δ} (lbs) = $L_{\Delta}*E*A/L$	Total cable tension, $T = T_{pre}+T_{\Delta}$ (lbs)		
1800.0193	0.0193	3.7	203.7		
Cable slope, S = atan($\partial/(L_f/2)$) (°)	Force against cone per cable, P = sin(S)*T (lbs)	Total resisted load on cone = 2sinø*P (lbs)			
1.6645	5.9	8.4	≥ 5.6# OK		

Cable induced forces on posts:

Cable tension forces occur where cables either change direction at the post or are terminated at a post. Top rail acts as a compression element to resist cable tension forces. The top rail infill piece inserts tight between the posts so that the post reaction occurs by direct bearing.

Bottom rail when present will be in direct bearing to act as a compression element.

When no bottom rail is present the post anchorage shall be designed to accommodate a shear load in line with the cables based on one half the total cable tension load.

Typical residential application:					
Span, L = 36"-1" (Assumes no bottom rail)	Cable pretension, P (lbs)	Number of cables, N	End post loading, w = P*N/L (pli)	End post moment = wL ² /8 (in-lbs)	Allowable moment on post, Ma (in-lbs)
35	200	10	57.1	8750	19,600"#
					> 8,750"#
Typical commerc	ial application:				
Span, L = 42"-1" Max able Number of cables, N bottom rail) (lbs)		End post loading, w = P*N/L (pli)	End post moment = wL ² /8 (in-lbs)	Allowable moment on post, Ma (in-lbs)	
41	200	11	53.7	11275	19,600
					> 11,300"#

The following pages include calculations checking the interaction between cable loading on the end post and live loading on the end post.

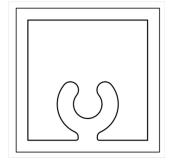
Post span, L (in)	Load per cable, T (lbs)	Number of cables, N	Uniform load W(pli)
40.5	200	11	53.66
Post moment (in-lbs), wL ² /8	Check in combination with top rail loads.	M _{a,y} (in-lbs)	M _{a,x} (in-lbs)
11002		21800	19600
x (measured from top)	$M_{infill} = wx(l-x)/2 (in-lbs)$	$M_{toprail} = 200 \#^*(x+1)$	$\begin{aligned} &M_{\text{infill}}/M_{a,y} + M_{\text{toprail}}/M_{a,x} \\ &\text{(in-lbs)} < 1.0 \text{ OK} \end{aligned}$
20	11000.00	4200	0.72
21	10986.59	4400	0.73
22	10919.51	4600	0.74
23	10798.78	4800	0.74
24	10624.39	5000	0.74
25	10396.34	5200	0.74
26	10114.63	5400	0.74
27	9779.27	5600	0.73
28	9390.24	5800	0.73
29	8947.56	6000	0.72
30	8451.22	6200	0.70
31	7901.22	6400	0.69
32	7297.56	6600	0.67
33	6640.24	6800	0.65
34	5929.27	7000	0.63
35	5164.63	7200	0.60
36	4346.34	7400	0.58
37	3474.39	7600	0.55
38	2548.78	7800	0.51
39	1569.51	8000	0.48
40	536.59	8200	0.44
40.5	0.00	8300	0.42

For corner posts the corner will hold at most, half the 200# live load because the top rail will act as a tie and share the load with at least one other post. For 50plf live loads the corner post may be loaded in both directions but the loading will still be shared with one other post in each direction that is loaded. For worst case 6' spacing, $P_{total}=2*6'/2*50plf/2=150\#$ which controls over the 200# concentrated load's 100# net load to the post.

Check infill loading on po	sts, commercial end post	condition:	
Post span, L (in)	Load per cable, T (lbs)	Number of cables, N	Uniform load W(pli)
40.5	150	11	40.74
Post moment (in-lbs), wL ² /8	Check in combination with top rail loads.	M _{a,y} (in-lbs)	M _{a,x} (in-lbs)
8353		21800	19600
x (measured from top)	$M_{infill} = wx(I-x)/2$ (in-lbs)	$M_{toprail} = 75 \#^*(x+1)$	(M _{infill} +M _{toprail})/M _{a,y} + (M _{infill} +M _{toprail})/M _{a,x} (in- lbs)
20	8351.85	1575	0.96
21	8341.67	1650	0.97
22	8290.74	1725	0.97
23	8199.07	1800	0.97
24	8066.67	1875	0.96
25	7893.52	1950	0.95
26	7679.63	2025	0.94
27	7425.00	2100	0.92
28	7129.63	2175	0.90
29	6793.52	2250	0.88
30	6416.67	2325	0.85
31	5999.07	2400	0.81
32	5540.74	2475	0.78
33	5041.67	2550	0.74
34	4501.85	2625	0.69
35	3921.30	2700	0.64
36	3300.00	2775	0.59
37	2637.96	2850	0.53

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com


Check infill loading on po	ests, commercial end post	condition:	
Post span, L (in)	Load per cable, T (lbs)	Number of cables, N	Uniform load W(pli)
34.5	200	9	52.17
Post moment (in-lbs), wL ² /8	Check in combination with top rail loads.	M _{a,y} (in-lbs)	M _{a,x} (in-lbs)
7763		21800	19600
x (measured from top)	$M_{infill} = wx(I-x)/2$ (in-lbs)	$M_{toprail} = 75 \#^*(x+1)$	(M _{infill} +M _{toprail})/M _{a,y} + (M _{infill} +M _{toprail})/M _{a,x} (in- lbs)
12	7043.48	975	0.78
13	7291.30	1050	0.81
14	7486.96	1125	0.83
15	7630.43	1200	0.86
16	7721.74	1275	0.87
17	7760.87	1350	0.88
18	7747.83	1425	0.89
19	7682.61	1500	0.89
20	7565.22	1575	0.89
21	7395.65	1650	0.88
22	7173.91	1725	0.86
23	6900.00	1800	0.84
24	6573.91	1875	0.82
25	6195.65	1950	0.79
26	5765.22	2025	0.75
27	5282.61	2100	0.72
28	4747.83	2175	0.67
29	4160.87	2250	0.62

PICKETS 3/4" SQUARE

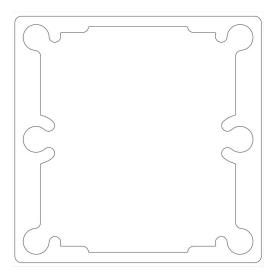
Used as infill at 4" O.C. max $Z_x=0.050$ in³

b/t = 0.626"/0.06" = 10.4

Allowable moment, M_a =0.050in³*15.2ksi=760"# Loading is spread over a 12"x12" square and the pickets are at 4" O.C. max. Assume infill load is carried by a minimum of three pickets.

Max picket span = 760" #*4/(50#/3)= 182" >> 60" (Pickets may be used at all guard heights considered ing this report.)

Connections


Pickets to top and bottom rails direct bearing for lateral loads –ok #10 screw in to top and bottom infill pieces. Shear strength = 2x F_{upost}x dia screw x t_{rail} x SF ADM Eq 5.4.3-2 V= 30 ksi '0.19" · 0.1" · 1 = 190# 3 (FS)

Connections

Pickets to top and bottom rails direct bearing for lateral loads –ok #10 screw in to top and bottom infill pieces. Shear strength = $2x F_{upost}x$ dia screw $x t_{rail} x SF$ ADM Eq 5.4.3-2 V= 38 ksi \cdot 0.19" \cdot 0.1" \cdot 1 = 240# \cdot 3 (FS)

POST DESIGN - 2-3/8" Square

Post flexural strength is calculated according to the 2020 Aluminum Design Manual Chapter F. Possible failure modes are local buckling, lateral torsional buckling and yielding. The aluminum alloy is 6005-T61A.

6005-T61 Aluminum. Local buckling of flange element supported on both sides.					
S (in ³)	Z (in ³)	b (in)	t (in)		
1.13	1.35	2.2	0.24		
λ = b/t	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
9.16666666666667	For $\lambda \le 20.8$, $F_c/\Omega = 21.2$ ksi For yielding, Strength is controlled by rupture, $F/\Omega = 38$ ksi/1.95 = 19.5ksi.				
F _c /Ω (ksi)	For $20.8 < \lambda < 33$, $F_c/\Omega = 27.3-0.291\lambda$				
19.5	For $\lambda \ge 33$, $F_c/\Omega = 58$	0/λ			

If $\lambda \leq 20.8$, local buckling does not control and the strength is controlled by ZF/ Ω . Note that for 6005-T61A $F_u/(k_t\Omega) < F_y/\Omega$.

If $\lambda > 20.8$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
26.325	26325	

The above calculations show that local buckling does not control. Lateral torsional buckling calculations are shown on the following page and will control design. Because the post is square it may be appropriate to design to the yield strength rather than the lateral torsional buckling strength. Engineering judgment should be used to determine if the specific installation is susceptible to a lateral torsional buckling failure. In this report, allowable spacing tables are based on the more conservative lateral torsional buckling.

6005-T61 Alum				
S (in ³)	Z (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
1.13	1.35	10100000	1.42	0.029
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
0	1.04	25000	65.7	33750
Any looding dia	tribution			

Any loading distribution:

C _b	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
				2
1.3	0	1	-1.1875	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b^2) (U + \sqrt{(U^2 + 0.038JL_b^2/I_y + C_w/I_y)})$ (in-lbs)

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	984385	9.382	32657	19792
36	656087	11.492	32411	19643
42	562329	12.413	32304	19578
48	492020	13.270	32204	19518
60	393600	14.837	32021	19407
72	327992	16.253	31856	19307

For typical 42" post height, $M_a = 19,600$ "#

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329

Post under weak axis bending:

6005-T61 Aluminum. Local buckling of flange element supported on both sides.					
S (in ³)	Z (in ³)	b (in)	t (in)		
0.871	1.12	0.937	0.1		
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
9.37	For $\lambda \le 20.8$, $F_c/\Omega = 21.2$ ksi For yielding, Strength is controlled by rupture, $F/\Omega = 38$ ksi/1.95 = 19.5ksi.				
F _c /Ω (ksi)	For $20.8 < \lambda < 33$, $F_c/\Omega = 27.3-0.291\lambda$				
19.5	For $\lambda \ge 33$, $F_c/\Omega = 58$	0/λ			

If $\lambda \le 20.8$, local buckling does not control and the strength is controlled by ZF/ Ω . Note that for 6005-T61A $F_u/(k_t\Omega) < F_v/\Omega$.

If $\lambda > 20.8$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
21.84	21840	

135° x 2.375" Post

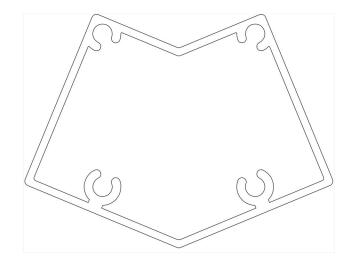
First calculate moment strength about the strong axis.

 $I_x = 1.90 \text{ in}^4$

 $S_x = 0.956 \text{ in}^3$

 $Z_x = 1.45 \text{ in}^3$

 $I_v = 1.26 \text{ in}^4$


b = 1.97"

t = 0.1"

 $C_{\rm w} = 0.0342 \ in^6$

 $\beta = -0.0157 \text{ in}$

 $g_0 = 0 \text{ in }$

6005-T61 Aluminum. Local buckling of flange element supported on both sides.					
S (in ³)	Z (in ³)	b (in)	t (in)		
0.935	1.39	1.97	0.1		
λ = b/t	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
19.7	For $\lambda \le 20.8$, $F_c/\Omega = 21.2$ ksi For yielding, Strength is controlled by rupture, $F/\Omega = 38$ ksi/1.95 = 19.5ksi.				
F _c /Ω (ksi)	For $20.8 < \lambda < 33$, $F_c/\Omega = 27.3-0.291\lambda$				
19.5	For $\lambda \ge 33$, $F_c/\Omega = 58$	30/ λ			

If $\lambda \le 20.8$, local buckling does not control and the strength is controlled by ZF/ Ω . Note that for 6005-T61A $F_u/(k_t\Omega) < F_y/\Omega$.

If $\lambda > 20.8$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
27.105	27105	

As this post has greater strength than the standard post it will not govern post spacing.

6005-T61 Alum				
S_x (in ³)	Z_x (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
0.956	1.45	10100000	2.0	0.039
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
0	1.26	25000	65.7	36250

Any loading distribution:

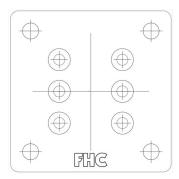
C _b	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
				2
1.3	0	1	-1.5	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b^2) (U + \sqrt{(U^2 + 0.038JL_b^2/I_y + C_w/I_y)})$ (in-lbs)

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)


 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	1285865	7.550	34621	20983
36	857031	9.248	34255	20761
42	734560	9.990	34095	20664
48	642718	10.680	33946	20573
60	514154	11.940	33674	20409
72	428452	13.080	33428	20260

CONNECTION TO BASEPLATE

5/16"x2" Type F 410 SS fasteners with MagniCoat finish. The MagniCoat finish provides galvanic separation between the fastener and aluminum.

Tested Strength with four screws (lbs)	Tested strength with six screws (lbs)	Safety factor, Ω	Load height above baseplate (in)
731	861	2.5	40
Allowable moment load on connection with four screws (lbs)	Allowable moment load on connection with six screws (lbs)		
11696	13776		

BASEPLATE MOUNTED TO WOOD - SINGLE FAMILY RESIDENCE

For 200# top load and 36" post height:
$$M = 200#*36" = 7,200"#$$

 $T_{200} = 7,200$ = 826#
 $2*4.36"$

Assume Hem-fir, G = 0.43Adjustment for wood bearing: Bearing Area Factor: $C_b = (5"+0.375)/5" = 1.075$ a = 2*826#/(1.075*625psi*5")= 0.492"T = 7,200/[2*(4.36-0.49/2)]= 875#

Required embed depth:

Based on NDS Table 11.2A for 3/8" lag screws into Hem-fir, G = 0.43

W = 253pli

 $W' = WC_DC_m = 243*1.6*1.0 = 389 \text{ pli}$ for dry conditions

 $W' = WC_DC_m = 243*1.6*0.7 = 272 \text{ pli for wet conditions}$

For protected installations the minimum embedment is:

 $l_e = 875\#/389\#/in = 2.25$ ": +7/32" for tip = 2.47"

For weather exposed installations the minimum embedment is:

 $l_e = 875 \# / 272 \# / in = 3.22$ ": +7/32" for tip = 3.44"

FOR WEATHER EXPOSED INSTALLATIONS USE 5" LAG SCREWS AND INCREASE BLOCKING TO 4.5" MINIMUM THICKNESS.

For 42" guard height and 200# load increase lag screw embedment to:

e = 42/36*2.25"+7/32 = 2.85" for dry conditions e = 2.85/0.7 = 4.06" for wet conditions

Lag screw length shall be as needed to achieve the required embedment into solid wood.

Alternative anchorage may be designed for the specific project conditions to include post loading, lumber species and exposure conditions.

For guards subject to the requirements of the International Residential code post spacing may be up to 6' on center.

BASE PLATE MOUNTED TO CONCRETE

Anchor options for baseplate surface mounts are summarized in the table below. Calculations for each option are shown on the following pages. The residential and commercial applications both assume a max top rail height of 42". The commercial application must resist the 50 pounds per foot uniform load or the 200 pound concentrated load. The residential application only needs to resist the 200 pound concentrated load.

Anchor Option Summary					
Anchor option	Allowable spacing for commercial applications (feet)	Allowable spacing for residential applications (feet)			
(4) 3/8"x3-3/4" US Ultrawedge Anchors	4	6			
(4) 3/8"x5" US Ultrawedge Anchors	5	6			
(4) 3/8"x4" Hilti KH-EZ Anchors	4	6			
(4) 3/8"x5" Hilti KH-EZ Anchors	5	6			

Baseplate with mor EZ per ESR 3027.	ment anchorage. Con-	crete failure modes a	re according to ACI 3	318-19 Chapter 17. P	ost installed anchors.	Assume Hilti KH-
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	2.5	3.5	3.75		4.75	0.375
Area calculations, anchors in tension	assumes two					
A _{Vc} (in ²)	A _{nc} (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
67.6875	81.5625	55.125	56.25			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$arPsi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0513	2247	2900
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{\mathrm{c,N}}$	$\Psi_{ m cp,N}$	N _b	N _{cbg} (lbs)
	1	0.98	1	1	3681	5230
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	10460				
Also check pullout:	Pullout from cracke (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1178	200	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail				
2125	0	Pass				
Baseplate effective width, be (in)	Lever arm to anchor, d (in)	a=T _{n,min} / (0.85f'cbe) (in)	$\phi M_n/ALF = \phi T_n/ALF*(d-a/2)$ (inlbs)	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375	0.41	8860	8400	1.118	
				Pass	<1.2 Pass	

Baseplate with mor EZ per ESR 3027.	ment anchorage. Con	crete failure modes ar	re according to ACI	318-19 Chapter 17. P	ost installed anchors.	Assume Hilti KH-
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	3.55	3.5	3.75		4.75	0.375
Area calculations, a anchors in tension	assumes two					
A _{Vc} (in ²)	A _{nc} (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
67.6875	127.08	55.125	113.4225			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{\mathrm{c,V}}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0513	2410	3111
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{\mathrm{c,N}}$	$\Psi_{\mathrm{cp,N}}$	N _b	N _{cbg} (lbs)
	1	0.89718309859154	1	1	6228	6261
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	12521				
Also check pullout:	Pullout from cracke (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1264	250	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail				
2543	0	Pass				
Baseplate effective width, be (in)	Lever arm to anchor, d (in)	a=T _{n,min} / (0.85f'cbe) (in)	$\phi M_n/ALF = \phi T_n/ALF * (d-a/2) (inlbs)$	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375	0.49	10503	10500	1.198	
				Pass	<1.2 Pass	

Also check 3/8" US Ultrawedge Anchors:

Standard lengths are 3-3/4" or 5". For 3/8" and 3-3/4" long anchor baseplate, $h_{nom} = 3.75$ "-0.5"-0.375" = 2.875". $h_{ef} = 2.875$ "-0.375" = 2.5".

Baseplate with moment anchorage. Concrete failure modes are according to ACI 318-19 Chapter 17. Post installed anchors. Assume US Ultrawedge per FSR 3981

f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	2.5	3.5	3.75		4.75	0.375
Area calculations, anchors in tension	assumes two					
Avc (in ²)	A _{nc} (in ²)	Avo (in²)	A _{No} (in ²)			
67.6875	81.5625	55.125	56.25			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{\mathrm{c,V}}$	$\Psi_{ m h,V}$	V_b	V _{cbg} (lbs)
	1	1	1	1.0513	2247	2900
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{\mathrm{c,N}}$	$\Psi_{ m cp,N}$	N _b	N _{cbg} (lbs)
	1	0.98	1	1	3681	5230
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	10460				
Also check pullout:	Pullout from crack (lbs)	ted concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1178	200	Pass	
øT _n /ALF (lbs)	T (lbs)	Pass/Fail				
2125	0	Pass				
Baseplate effective width, b _e (in)	Lever arm to anchor, d (in)	$a=T_{n,min}/$ (0.85f'cbc) (in)	$\begin{array}{c} \emptyset M_n \! / \! ALF \! \! = \! \! \emptyset T_n \! / \\ ALF^*(d \! - \! a \! / \! 2) \mbox{ (in-lbs)} \end{array}$	M _{max} (in-lbs)	Combined, M/ $M_a+T/T_a+V/V_a < 1.2$	
5	4.375	0.41	8860	8400	1.118	
				Pass	<1.2 Pass	

For 5" long anchor, $h_{ef} = 5$ "-0.5"-0.375"-0.375" = 3.75".

Baseplate with moment anchorage. Concrete failure modes are according to ACI 318-19 Chapter 17. Post installed anchors. Assume US Ultrawedge per ESR 3981.

f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	3.75	3.5	3.75		4.75	0.375
Area calculations, a anchors in tension	assumes two					
A _{Vc} (in ²)	A _{nc} (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
67.6875	136.875	55.125	126.5625			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{\mathrm{c,V}}$	$\Psi_{ m h,V}$	V_b	V _{cbg} (lbs)
	1	1	1	1.0513	2437	3145
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{\mathrm{c,N}}$	$\Psi_{\mathrm{cp,N}}$	N _b	N _{cbg} (lbs)
	1	0.8866666666666	1	1	6762	6484
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	12968				
Also check pullout:	Pullout from crack (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	$ \phi V_n/ALF $ (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1278	250	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail				
2634	0	Pass				
Baseplate effective width, be (in)	Lever arm to anchor, d (in)	$\begin{array}{l} a{=}T_{n,min}/\\ (0.85f\ensuremath{'eb_e})\ (in) \end{array}$	$ \emptyset M_n/ALF = \emptyset T_n/ $ $ALF*(d-a/2)$ (in- lbs)	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375	0.51	10854	10500	1.163	
				Pass	<1.2 Pass	

Core Mounted Posts

Mounted in either 4"x4"x4" blockout, or 4" to 6" dia by 4" minimum deep cored hole.

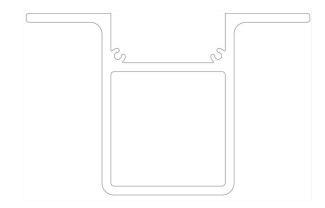
Core mount okay for 6' post spacing.

Assumed concrete strength 2,500 psi for existing concrete and 3,000 psi grout.

Max load -6 *• 50 plf = 300#

M = 300 # 42" = 12,600" #

Or M = 250#*42" = 10,500"# for 5' max spacing


Maximum post spacing = 5' commercial or 6' residential (for 6' commercial max post spacing see higher embedment option on the following page)

spacing see nigner	embedment option	n on the following	page)						
CONCRETE CORE N Failure modes are con	MOUNT crete crushing or shear	breakout.							
Core width (in), b _c	Stanchion width (in), b _s	Grout strength (psi), f'c	Edge distance (in), c	Embedment (in), d					
4	2.375	3000	3.8	4					
Edge breakout calcula	tions								
Breakout width (in), $b_B = b_s + c$									
6.175	3.9	1.583	13.975	30					
λ	4λ(f'c) ^{0.5}	$(2+4/\beta)\lambda(f'_c)^{0.5}$	$(2+\alpha_s C/b_0)\lambda(f'_c)^{0.5}$	v_c = minimum of previous three cells (psi)					
1	219.09	247.917	556.35	219.09					
$V_n = v_c b_0 c \text{ (lbs)}$	$V_a = \emptyset V_n / LF = 0.75 V_n / 1.6 \text{ (lbs)}$								
11635	5454								
Concrete Crushing Ca	lculations								
Bearing width (in), $b_b = min(b_s+b_c/2,b_c)$	Breakout height (in), H = min(d/2+b _c /4,d)	$P_n = 0.85b_bHf'_c$ (lbs)	$P_a = \emptyset P_n / LF = 0.65 P_n / 1.6$						
4	3	30600	12431.25						
Allowable Moment Ca	alculation								
$\begin{aligned} M_{a} &= min(V_{a},\!P_{a})^{*}d/2\\ (in\text{-}lbs) \end{aligned}$	M _{max} = 50plf*5'*42"								
10908	10500	OK							

For 6' O.C. commercial option, use 4-1/2" minimum embedment

CONCRETE CORE N Failure modes are con	MOUNT crete crushing or shear	breakout.		
Core width (in), b _c	Stanchion width (in), b _s	Grout strength (psi), f'c	Edge distance (in), c	Embedment (in), d
4	2.375	3000	3.8	4.5
Edge breakout calcula	tions			
Breakout width (in), $b_B = b_s + c$	Breakout height (in), H = d/2+c/2	$\beta = b_B/H$	Perimeter (in), $b_0 = b_B+2H$	α_s Three sided breakout
6.175	4.15	1.488	14.475	30
λ	4λ(f' _c) ^{0.5}	$(2+4/\beta)\lambda(f'_c)^{0.5}$	$(2+\alpha_{\rm s}C/b_0)\lambda({\rm f'_c})^{0.5}$	v_c = minimum of previous three cells (psi)
1	219.089	256.787	540.911	219.089
$V_n = v_c b_0 c \text{ (lbs)}$	$V_a = \emptyset V_n / LF = 0.75 V_n / 1.6 \text{ (lbs)}$			
12051	5649			
Concrete Crushing Ca	lculations			
Bearing width (in), $b_b = min(b_s+b_c/2,b_c)$	Breakout height (in), H = min(d/2+b _c /4,d)	$P_n = 0.85b_bHf'_c$ (lbs)	$P_a = \emptyset P_n / LF = 0.65 P_n / 1.6$	
4	3.25	33150	13467.1875	
Allowable Moment Ca	alculation			
$\begin{aligned} M_{a} &= min(V_{a}, P_{a})*d/2\\ (in-lbs) \end{aligned}$	M _{max} = 50plf*6'*42"			
12710	12600	OK		

FASCIA MOUNTED POSTS WITH FASCIA BOOT

For Fascia boot, the post slides inside the boot and the boot is connected to the structure with (4) 3/8" lag screws or concrete anchors.

Assume upper anchors are 4" below the walking surface max	Max post spacing for residential (ft)	Max post spacing for commercial (ft)	
	6	5	
Upper anchors are at least 5" above the bottom of the bracket	T _{residential} = (36"+9")/5" *200#	T _{commercial} = (42"+9")/5" *50plf*S	
	1800	2550	

For anchorage to wood: 3/8" lag screws	Recall W' for dry applications	W' for wet applications	
	389	272	
Required penetration for residential dry applications	Required penetration for residential wet applications	Required penetration for commercial dry applications	Required penetration for commercial wet applications
2.53	3.53	3.50	4.91

Also check 3/8" US Ultrawedge Anchors:

Standard lengths are 3-3/4" or 5". For 3/16" bracket and 3-3/4" long anchor baseplate, $h_{nom} = 3.75$ "-0.5"-0.1875" = 3.06". $h_{ef} = 3.06$ "-0.375" = 2.69".

Baseplate with moment anchorage. Concrete failure modes are according to ACI 318-19 Chapter 17. Post installed anchors. Assume US Ultrawedge per ESR 3981.

Ultrawedge per ES	R 3981.					
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	2.69	2.5	4.5		4.75	0.375
Area calculations, a anchors in tension	assumes two					
Avc (in ²)	A _{nc} (in ²)	Avo (in²)	A _{No} (in ²)			
45	82.14495	28.125	65.1249			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{\mathrm{c,V}}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0000	1376	2202
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{\mathrm{ed,N}}$	$\Psi_{\mathrm{c,N}}$	$\Psi_{\mathrm{cp,N}}$	N _b	N _{cbg} (lbs)
	1	0.88587360594795	1	1	4108	4590
Shear pryout	kcp	V _{cbg} (lbs)				
	2	9181				
Also check pullout:	Pullout from cracke (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	$ \emptyset V_n / ALF (lbs) $	V (lbs)	Pass/Fail	
0.65	0.65	1.6	895	200	Pass	
øT _n /ALF (lbs)	T (lbs)	Pass/Fail	Combined, M/ $M_a+T/T_a+V/V_a < 1.2$			
1865	1800	Pass	1.189			
			<1.2 Pass			

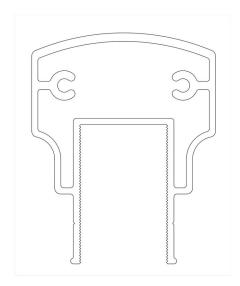
OK for residential

For 5" long anchor, $h_{ef} = 5$ "-0.5"-0.1875"-0.375" = 3.94".

Ultrawedge per ES		ncrete failure modes ar	8	- 1		
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3500	3.94	2.5	4.5		4.75	0.375
Area calculations, anchors in tension	assumes two					
A _{Vc} (in ²)	A _{nc} (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
45	137.2512	28.125	139.7124			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{\mathrm{c,V}}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0000	1605	2567
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{\mathrm{c,N}}$	$\Psi_{\mathrm{cp,N}}$	N _b	N _{cbg} (lbs)
	1	0.82690355329949	1	1	7866	6389
Shear pryout	k_{cp}	V _{cbg} (lbs)				
	2	12779				
Also check pullout:	Pullout from crace (lbs)	ked concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	$ \emptyset V_n / ALF (lbs) $	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1043	200	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail	Combined, M/ $M_a+T/T_a+V/V_a < 1.2$			
2596	2550	Pass	1.174			
			<1.2 Pass			

OK for commercial

TOP RAILS


A top rail is required for all installations. The railing system may be used with the X1, X2, X3, X35 and X4 top rails. The maximum post spacing allowed for picket rail is 72" but the top rail may limit the allowable spacing further.

The top rail must hold the 200# or 50plf uniform live loads. For the 200# live load, maximum moment M = 200 # L/4 where L is the post spacing. For the 50plf live load, maximum moment $M = (50plf/12)L^2/8$ where L is the post spacing in inches. By setting equations equal to each other, $(50plf/12)L^2/8=200L/4$, the span where 50plf live load controls over the 200# concentrated load can be solved. Solving for L gives L = 96" which is greater than the maximum post spacing of 72". Therefore, for all considered spans the 200# live load at center span will control.

Top Rail Engineering Properties The X-axis is taken as the horizontal axis and the Y-axis is the vertical axis.								
Top Rail	I _x (in ⁴)	I _y (in ⁴)	M _{a,x} (in-lbs) (Assumes max allowable free span)	M _{a,y} (in-lbs) (Assumes max allowable free span)	Allowable post spacing/ Allowable span (in)			
X1	0.383	0.355	5130	4940	72			
X2	0.147	0.976	2480	3530	60			
Х3	0.268	0.92	3090	3280	60			
X35	0.238	1.36	3250	6830	65			
X4	0.062	0.9	2480	11000	48			

X1

First check vertical bending:

X1 Vertical loading, local buckling of round hollow element under flexural compression							
S_c (in ³)	Z (in ³)	R_b (in)	t (in)				
0.225	0.614	2.41	0.125				
$\lambda = (R_b/t)^{1/2}$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21						
4.39089968002003	For $\lambda \le 8.4$, $F_c/\Omega = 27.7$ ksi-0.17 λ						
F _c /Ω (ksi)	For $8.4 < \lambda < 13.7$, $F_c/\Omega = 18.5-0.593\lambda$						
22.7	For $\lambda \ge 13.7$, $F_c/\Omega = 3$	$3776/(\lambda^2(1+\lambda/35)^2)$					

If $\lambda \le 8.4$, local buckling does not control and the strength is controlled by min(ZF_y/ Ω ,1.5SF_y).

If $\lambda > 8.4$, local buckling may control both the local buckling strength (F_c/ Ω *S) and the yielding strength must be assessed.

F_y/Ω (ksi)	• • • • • • • • • • • • • • • • • • • •	· · · /	$M_a(in-lbs) = min(1.5SF_y/\Omega,ZF_y/\Omega,SF_o/\Omega)*1000$
15.2	9.3328	N/A	5130

X1 Vertical load				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.247	0.468	10100000	0.157	0.108
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
-2.22	0.355	25000	78	11700

Сь	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x /$
1.14	0.5	0.5	0	-0.555

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1\text{-}\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c{}^3 \text{ for } \lambda < C_c \text{ (in-lbs)}$

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	163001	11.511	10571	6406
36	114055	13.761	10350	6273
42	99215	14.754	10252	6214
48	87801	15.684	10161	6158
60	71389	17.394	9993	6057
72	60150	18.949	9841	5964

X1 horizontal I				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.355	0.503	10100000	0.157	0.108
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
0	0.383	25000	78	12575

C _b	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
				2
1.14	0.5	0.5	-1	-0.5

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1\text{-}\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c{}^3 \text{ for } \lambda < C_c \text{ (in-lbs)}$

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	171201	13.465	11408	6914
36	119364	16.126	11178	6774
42	103724	17.300	11076	6713
48	91718	18.397	10981	6655
60	74490	20.414	10806	6549
72	62716	22.248	10647	6453

X1 horizontal loading, local buckling of flange element supported on both sides.						
S_c (in ³)	Z (in ³)	\mathbf{Z} (in ³) b (in) t (in)				
0.237	0.325	0.743	0.125			
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21					
5.944	For $\lambda \le 22.8$, $F_c/\Omega = \frac{1}{2}$	15.2ksi				
F _c /Ω (ksi)	For 22.9 $< \lambda <$ 39, F	For $22.9 < \lambda < 39$, $F_c/\Omega = 19.0-0.170\lambda$				
15.2	For $\lambda \ge 39$, $F_c/\Omega = 48$	4/λ				
If $\lambda \le 22.8$, local buck	ling does not control a	and the strength is con	trolled by ZF_y/Ω .			
If $\lambda > 22.8$, local buckling controls and the strength is calculated as F _c / Ω^* S.						
M _a (in-kips)	M _a (in-lbs)					
4.94	4940					

Top rail X2

X2 Vertical loading, local buckling of round hollow element under flexural compression				
S_c (in ³)	Z (in ³)	R_b (in)	t (in)	
0.15	0.264	1.375	0.125	
$\lambda = (R_b/t)^{1/2}$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21			
3.3166247903554	For $\lambda \le 8.4$, $F_c/\Omega = 27.7$ ksi-0.17 λ			
F _c /Ω (ksi)	For $8.4 < \lambda < 13.7$, $F_c/\Omega = 18.5-0.593\lambda$			
22.7	For $\lambda \ge 13.7$, $F_c/\Omega = 3$	$3776/(\lambda^2(1+\lambda/35)^2)$		

If $\lambda \le 8.4$, local buckling does not control and the strength is controlled by min(ZF_y/ Ω ,1.5SF_y).

If $\lambda > 8.4$, local buckling may control both the local buckling strength (F_c/ Ω *S) and the yielding strength must be assessed.

F_y/Ω (ksi)	• • •		M_a (in-lbs) = min(1.5SF _y /Ω,ZF _y / Ω, SF _c /Ω)*1000
15.2	4.0128	N/A	3420

X2 Vertical loading, lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
0.15	0.264	10100000	0.001	0.279
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
-3.494	0.976	25000	78	6600

Cb	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
				2
1.14	0.5	0.5	0	-0.8735

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1\text{-}\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c{}^3 \text{ for } \lambda < C_c \text{ (in-lbs)}$

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	27284	21.926	5436	3294
36	13136	31.599	4922	2983
42	10128	35.986	4689	2842
48	8172	40.062	4472	2711
60	5862	47.300	4088	2478
72	4595	53.426	3763	2280

X2 Horizontal I				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.651	0.777	10100000	0.001	0.279
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	$M_p = ZF_y$ (inlbs)
0	0.147	25000	78	19425

Cb	C ₁	C ₂	g _o (in)	$U = C_1g_0 + C_2\beta_x /$
				2
1.14	0.5	0.5	-1	-0.5

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

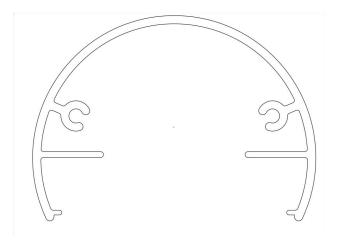
 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	25835	46.940	14154	8578
36	12163	68.411	11743	7117
42	9251	78.442	10546	6392
48	7354	87.978	8384	5081
60	5107	105.580	5822	3528
72	3866	121.347	4407	2671

X2 Horizontal loading direct buckling analysis

For local buckling use the continuous strength method. SCIA Engineer is used to create a 3D model of the flange. The model uses a 3rd order non-linear analysis that accounts for large deflections.

The supported edge of the leg is assumed to be able slide in the direction of the length of the top rail. The model uses a 3rd order non-linear analysis that accounts for large deflections and buckling modes. A 72" length of the element is created with a uniform load at one end that is factored until the element is either unable to bear the load or experiences high lateral displacement. The aluminum is assumed to be elastic so the buckling stress found is the elastic buckling stress, F_e, which is used with the provisions of ADM B.5.5.5 to determine the allowable compression stress.


Element area, A _e = Lt (in ²)	Total load applied to model, Pcr (lbs)	Elastic buckling stress, F _e = P _{cr} / A _e (psi)
0.234	1990	8504

X2 Horizontal loading, Direct Strength Method					
S (in ³)	Z (in ³)	F _e (ksi)	E (ksi)		
0.651	0.777	8.50	10100		
$B_p = F_{cy}(1+(F_{cy}/(1500ksi))^{1/3})$	$D_p = B_p/10*(B_p/E)^{1/2}$	k ₁	F _{cy} (ksi)		
31.386	0.175	0.35	25		
k ₂	$\lambda_{eq} = \pi (E/F_e)^{1/2}$	$\lambda_1 = (B_p - F_{cy})/D_p$	$\lambda_2 = (k_1 B_p)/D_p$		
2.27	108.266	36.499	62.786		
	For $\lambda_{eq} \leq \lambda_1$	For $\lambda_1 < \lambda_{eq} \le \lambda_2$	For $\lambda_{eq} \geq \lambda_2$		
F _c formula(ksi)	F _{cy}	B_p - D_p λ_{eq}	$k_2(B_pE)^{1/2}/\lambda_{eq}$		
F _c (ksi) =	25	12.444	11.805		
F _c , controlling	$F_{c}/\Omega = F_{c}/1.65$				
11.8	7.2				
If $\lambda_{eq} \leq \lambda_1$ local buckli	ing does not control ar	nd the strength is cont	rolled by $ZF_y/Ω$.		
If 2 > 2 level buckling controls and the atropath is calculated as F (0*C					

If $\lambda_{eq} > \lambda_1$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
7.68	7685	

X3 Vertical bending:

X3 Vertical loading sides.	g, local buckling of	flange element sup	ported on both				
S _c (in ³) (Assumes	Z (in ³)	b (in)	t (in)				
downward loading)							
0.225	0.37	1.25	0.07				
$\lambda = b/t$	Allowable compreto ADM 2020 Design	ssion stress is calc yn Table 2-21	ulated according				
17.9	For $\lambda \le 22.8$, $F_c/\Omega = \frac{1}{2}$	15.2ksi					
F₀/Ω (ksi)	For 22.9 $< \lambda <$ 39, F	$F_{c}/\Omega = 19.0-0.170 \lambda$					
15.2	For $\lambda \ge 39$, $F_c/\Omega = 48$	4/λ					
If $\lambda \le 22.8$, local buck	ling does not control a	and the strength is con	trolled by ZF_y/Ω .				
If $\lambda >$ 22.8, local buckling controls and the strength is calculated as F _c / Ω^* S.							
M _a (in-kips)	M _a (in-lbs)						
5.624	5624	5624					

X3 Vertical load				
S (in ³)	Z (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
0.225	0.370	10100000	0.002	0.251
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
-4.371	0.92	25000	78	9250

Сь	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
1.32	0.5	0.5	0	-1.09275

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1\text{-}\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c{}^3 \text{ for } \lambda < C_c \text{ (in-lbs)}$

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	21957	27.818	7266	4404
36	11452	38.519	6503	3941
42	9210	42.952	6186	3749
48	7746	46.837	5909	3581
60	6000	53.216	5454	3306
72	5022	58.165	5101	3092

X3 Horizontal loading direct buckling analysis

For local buckling use the continuous strength method. SCIA Engineer is used to create a 3D model of the flange. The model uses a 3rd order non-linear analysis that accounts for large deflections.

The supported edge of the leg is assumed to be able slide in the direction of the length of the top rail. The model uses a 3rd order non-linear analysis that accounts for large deflections and buckling modes. A 72" length of the element is created with a uniform load at one end that is factored until the element is either unable to bear the load or experiences high lateral displacement. The aluminum is assumed to be elastic so the buckling stress found is the elastic buckling stress, F_e, which is used with the provisions of ADM B.5.5.5 to determine the allowable compression stress.

Element area, A _e = Lt (in ²)	Total load applied to model, Pcr (lbs)	Elastic buckling stress, F _e = P _{cr} / A _e (psi)
0.366	3050	8333

X3 Horizontal loading, Direct Strength Method						
S (in ³)	Z (in ³)	F _e (ksi)	E (ksi)			
0.268	0.334	8333.33	10100			
$B_p = F_{cy}(1+(F_{cy}/(1500ksi))^{1/3})$	$D_p = B_p/10*(B_p/E)^{1/2}$	k ₁	F _{cy} (ksi)			
31.386	0.175	0.35	25			
k ₂	$\lambda_{eq} = \pi (E/F_e)^{1/2}$	$\lambda_1 = (B_p - F_{cy})/D_p$	$\lambda_2 = (k_1 B_p)/D_p$			
2.27	3.459	36.499	62.786			
	For $\lambda_{eq} \leq \lambda_1$	For $\lambda_1 < \lambda_{eq} \le \lambda_2$	For $\lambda_{eq} \geq \lambda_2$			
F _c formula(ksi)	F _{cy}	B_p - D_p λ_{eq}	$k_2(B_pE)^{1/2}/\lambda_{eq}$			
F _c (ksi) =	25	30.781	369.533			
F _c , controlling	$F_c/\Omega = F_c/1.65$					
25.0	15.2					
If $\lambda_{eq} \leq \lambda_1$ local buckling does not control and the strength is controlled by ZF_y/Ω .						
If $\lambda_{co} > \lambda_{t}$ local buckling controls and the strength is calculated as $F_{c}/O^{*}S$						

If $\lambda_{eq} > \lambda_1$, local buckling controls and the strength is calculated as F_c/Ω^*S .

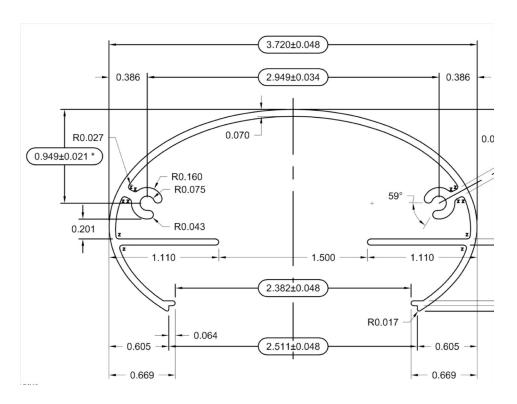
M _a (in-kips)	M _a (in-lbs)	
8.35	8350	

X3 Horizontal I				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.268	0.334	10100000	0.002	0.251
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
0	0.268	25000	78	8350

Сь	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
1.32	0.5	0.5	-0.875	-0.4375

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$


 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	32413	24.988	7082	4292
36	16190	35.356	6555	3973
42	12699	39.922	6324	3833
48	10403	44.108	6111	3704
60	7632	51.497	5736	3476
72	6052	57.829	5415	3282

X35 Vertical bending:

X35 Vertical loading, local buckling of round hollow element under flexural compression

S_c (in ³)	Z (in ³)	R_b (in)	t (in)	
0.245	0.352	2.64	0.07	
$\lambda = (R_b/t)^{1/2}$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21			
6.14119578862991	For $\lambda \le 8.4$, $F_c/\Omega = 27.7$ ksi-0.17 λ			
F _c /Ω (ksi)	For $8.4 < \lambda < 13.7$, $F_c/\Omega = 18.5-0.593\lambda$			
22.7	For $\lambda \ge 13.7$, $F_c/\Omega = 3$	$3776/(\lambda^2(1+\lambda/35)^2)$		

If $\lambda \le 8.4$, local buckling does not control and the strength is controlled by min(ZF_y/ Ω ,1.5SF_y).

If $\lambda > 8.4$, local buckling may control both the local buckling strength (F_c/ Ω *S) and the yielding strength must be assessed.

F _y /Ω (ksi)	ZF_y/Ω (in-kips)	SF_c/Ω (in-kips) (Only applies if > 6.5)	M_a (in-lbs) = min(1.5SF _y /Ω,ZF _y / Ω, SF _c /Ω)*1000
15.2	5.3504	N/A	5350.4

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329

X35 Vertical lo				
S (in ³)	Z (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
0.209	0.352	10100000	0.001	0.63
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
-4.51	1.36	25000	78	8800

Сь	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
1.32	0.5	0.5	0	-1.1275

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1\text{-}\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c{}^3 \text{ for } \lambda < C_c \text{ (in-lbs)}$

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	46036	18.516	7524	4560
36	21254	27.251	6922	4195
42	15992	31.416	6635	4021
48	12575	35.427	6358	3854
60	8554	42.955	5840	3539
72	6365	49.796	5368	3253

X35 Horizontal loading direct buckling analysis

For local buckling use the continuous strength method. SCIA Engineer is used to create a 3D model of the flange. The model uses a 3rd order non-linear analysis that accounts for large deflections.

The supported edge of the leg is assumed to be able slide in the direction of the length of the top rail. The model uses a 3rd order non-linear analysis that accounts for large deflections and buckling modes. A 72" length of the element is created with a uniform load at one end that is factored until the element is either unable to bear the load or experiences high lateral displacement. The aluminum is assumed to be elastic so the buckling stress found is the elastic buckling stress, F_e, which is used with the provisions of ADM B.5.5.5 to determine the allowable compression stress.

Element area, A _e (in ²)	Total load applied to model, Pcr (lbs)	Elastic buckling stress, F _e = P _{cr} /A _e (psi)
0.362	5250	14503

X35 Horizontal loading, Direct Strength Method					
S (in ³)	Z (in ³)	F _e (ksi)	E (ksi)		
0.734	0.933	14502.76	10100		
$B_p = F_{cy}(1+(F_{cy}/(1500ksi))^{1/3})$	$D_p = B_p/10^*(B_p/E)^{1/2}$	k ₁	F _{cy} (ksi)		
31.386	0.175	0.35	25		
k ₂	$\lambda_{\rm eq} = \pi (E/F_{\rm e})^{1/2}$	$\lambda_1 = (B_p \text{-} F_{cy}) / D_p$	$\lambda_2 = (k_1 B_p)/D_p$		
2.27	2.622	36.499	62.786		
	For $\lambda_{eq} \leq \lambda_1$	For $\lambda_1 < \lambda_{eq} \le \lambda_2$	For $\lambda_{eq} \geq \lambda_2$		
F _c formula(ksi)	F _{cy}	B_p - D_p λ_{eq}	$k_2(B_pE)^{1/2}/\lambda_{eq}$		
F _c (ksi) =	25	30.927	487.493		
F _c , controlling	$F_0/\Omega = F_0/1.65$				
25.0	15.2				
If $\lambda_{eq} \leq \lambda_1$ local buckling does not control and the strength is controlled by ZF_y/Ω .					

If $\lambda_{eq} > \lambda_1$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
23.33	23325	

X35 Horizontal loading, lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.734	0.933	10100000	0.001	0.63
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
0	0.238	25000	78	23325

Cb	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
				2
1.32	0.5	0.5	0	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	68167	28.516	19194	11633
36	30926	42.336	17192	10420
42	23016	49.074	16216	9828
48	17879	55.679	15259	9248
60	11829	68.454	13409	8127
72	8531	80.607	11261	6825

X4 TOP RAIL WOOD OR COMPOSITE MATERIAL

Aluminum rail is Alloy 6063 – T6 Aluminum

Aluminum Section

 I_{xx} : 0.0153 in⁴; I_{yy} : 0.322 in⁴ S_{xx} : 0.0257 in³; S_{yy} : 0.240 in³

Wood – varies G≥ 0.43

1-1/4" x 4" nominal or 1"x3-1/2" true

 $\begin{array}{lll} I_{xx} \colon 0.292 in^4; & I_{yy} \colon 3.57 in^4 \\ C_{xx} \colon 0.5 in; & C_{yy} \colon 1.75 in \\ S_{xx} \colon 0.583 in^3; & S_{yy} \colon 2.04 in^3 \end{array}$

Allowable Stress for aluminum: ADM Table 2-24

 $F_T = 15.2 \text{ ksi}$

 $F_C \rightarrow 6'$ span

Rail is braced by wood At 16" o.c. and legs have stiffeners therefore

 $F_c = 15.2 \text{ ksi}$

 $C_F = 1.5$ and $C_d = 1.6$

Minimum design strength F_b ' = 3,590psi

Minimum nominal strength = 3,590psi/(1.6*1.5) = 1,500psi

Or use 2x4 with nominal strength = 0.583in³/1.313in³*1500psi = 666psi to use at the same max spacing

Allowable Moments →

Horiz.= 0.24in³*15,200_{psi} +2.04in³*3,590_{psi} = 11,000"# Vertical load = 0.0257in³ •15,200_{psi} +0.583in³*3,590_{psi} = 2,480"#

Maximum allowable load for 72" o.c. post spacing - Horizontal load (Assumes top rail is supported by picket)

W = 9,940"#*8/(69.625"2) = 16.4 pli = 197 plf

P = 9,940"#*4/69.625" = 571#

Maximum span without load sharing, P = 200# or 50 lf - Vertical load

S = 2,410"#*4/200# = 48" clear

Max post spacing =48"+2.375" = 50.375" maximum post spacing

COMPOSITES: Composite materials, plastic lumber or similar may be used provided that the size and strength is comparable to the wood.

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

RAIL SPLICES:

Splice plate strength:

Vertical load will be direct bearing from rail/plate to post no bending or shear in plate.

Horizontal load will be transferred by shear in the fasteners.

Rail to splice plates:

#10 Tek screw strength: Check shear @ rail (6063-T6)

2x F_{urail}x dia screw x rail thickness x SF

$$V = 2.30 \text{ ksi } \cdot 0.19" \cdot 0.09" \cdot 1 = 3 \text{ (FS)}$$

342#/screw; for two screws = 684#

or F_{urplate}x dia screw x plate thickness x SF

V= 38 ksi
$$\cdot 0.19$$
" $\cdot 0.125$ " $\cdot 1 = 301$ #/screw; for two screws = 602# 3 (FS)

Top rail to splice piece:

Splice plate screw shear strength

2x F_{uplate}x dia screw x plate thickness x SF

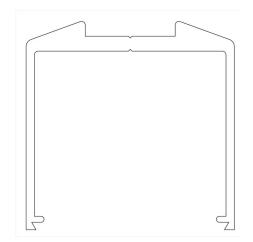
V= 2.38 ksi .0.19" · 0.125" ·
$$\frac{1}{3}$$
 (FS)

Check moment from horizontal load:

M = P*0.75". For 200# maximum load from a single rail on to splice plates

$$M = 0.75*200 = 150#$$
"

 $S = 0.075 \text{ in}^3$


$$f_b = 150\#"/(0.075) = 2,000 \text{ psi}$$

May be used with (2) #10 tek screws per leg, four screws per splice minimum.

Other variations of splice SPLST Stair splice

SPL=135 Deg splice

PICKET BOTTOM RAIL

Picket Bottom Rail Horizontal loading, lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
0.249	0.299	10100000	0.002	0.065
β_{x} (in)	l _y (in ⁴)	F _y (psi)	C _c	M _p = ZF _y (in- lbs)
0	0.13	25000	78	7475

Uniform Load on Simple Span (more conservative than point load at center span)

C _b	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
1.14	0.5	0.5	0	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \; (in\text{-lbs})$

 $M_{nmb} = M_{np}(1\text{-}\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c{}^3 \text{ for } \lambda < C_c \text{ (in-lbs)}$

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

Lateral torsional buckling strength varies with unbraced length.

 L_b (in) M_e (in-lbs) M_{nmb}/Ω (in-lbs) M_{nmb}/Ω (in-lbs)

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

24	20580	32.527	6059	3672
36	11214	44.064	5557	3368
42	9091	48.940	5345	3239
48	7644	53.371	5152	3122
60	5809	61.220	4810	2915
72	4697	68.084	4511	2734

Picket bottom rail horizontal loading, Local buckling of flange element supported on one side.					
S (in ³)	Z (in ³)	b (in)	t (in)		
0.249	0.299	1.5	0.07		
λ = b/t	Allowable compres to ADM 2020 Design	ssion stress is calc yn Table 2-21	ulated according		
21.4285714285714	For $\lambda \le 7.3$, $F_0/\Omega = 15$	5.2ksi			
F _c /Ω (ksi)	For $7.3 < \lambda < 12.6$,	$F_c/\Omega = 19.0-0.530 \lambda$			
7.23333333333334	333333334 For $λ ≥ 12.6$, $F_c/Ω = 155/λ$				
If $\lambda \le 7.3$, local buckli	ng does not control an	d the strength is contr	olled by ZF_y/Ω .		
If $\lambda > 7.3$, local buckli	ng controls and the str	ength is calculated as	F _c /Ω*S.		
M _a (in-kips)	M _a (in-lbs)				
1.8011	1801				
Max considered span = 72"post spacing - 2.375" post width (in)	M _a (in-lbs)	Designed for picket or cable infill only. Max loading is from 50# point load. $M_{max} = 50#*L/4$ (inlbs)			
69.625	1801	870	< 1,800"# OK		

X2 railing requires contribution from the bottom rail for vertical loads when spans are greater than 48".

Picket bottom rail vertical loading, Local buckling of flange element supported on one side.				
S (in ³)	Z (in ³)	b (in)	t (in)	
0.249	0.299	1.55	0.125	
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21			
12.4	For $\lambda \le 7.3$, $F_c/\Omega = 15.2$ ksi			
F _c /Ω (ksi)	For $7.3 < \lambda < 12.6$, $F_c/\Omega = 19.0-0.530\lambda$			
12.428	For $\lambda \ge 12.6$, $F_c/\Omega = 155/\lambda$			

If $\lambda \leq 7.3$, local buckling does not control and the strength is controlled by ZF_y/Ω .

If $\lambda > 7.3$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
3.094572	3095	

Picket bottom rail vertical loading, lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in ⁴)	C _w (in ⁶)
0.108	0.189	10100000	0.002	0.065
β_{x} (in)	l _y (in ⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)
0	0.218	25000	78	4725

Uniform Load on Simple Span (more conservative than point load at center span)

Cb	C ₁	C ₂	g _o (in)	$U = C_1 g_0 + C_2 \beta_x /$
				2
1.14	0.5	0.5	0	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b{}^2) (U + \sqrt{(U^2 + 0.038 J L_b{}^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

$M_{nmb} = \pi^2 E S_{xc} / \lambda^2 \text{ for } \lambda \ge C_c \text{ (in-lbs)}$

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M_{nmb}/Ω (in-lbs)
24	26650	18.824	4012	2431
36	14521	25.502	3759	2278
42	11772	28.323	3652	2213
48	9898	30.888	3555	2154
60	7523	35.430	3383	2050
72	6083	39.403	3232	1959

 $M_a = 2,050"#$

 M_a for X2 = 2,480"#

Combined = 4,530"#

 $M_{max} = 200 \# *60"/4 = 3000" \# < 4,530" \# OK$