04 December 2024

Report Holder: Frameless Hardware Company 2323 Firestone Blvd. South Gate, CA 90280

SUBJ: FRAMELESS HARDWARE COMPANY AR- ALUMINUM RAILING STAINLESS STEEL CABLE INFILL

The AR utilizes aluminum extrusions and various infills to construct building guards and rails for decks, balconies, stairs, fences and similar locations. The system is intended for interior and exterior weather exposed applications and is suitable for use in most natural environments. The system may be used for residential, commercial and industrial applications as detailed herein. The railing system can be used in level and sloped applications such as stairs and ramps. The system is an engineered system designed for the following criteria:

The design loading conditions are:

On Top Rail:

Concentrated load = 200 lbs any direction, any location

Uniform load = 50 plf, any perpendicular to rail

For installations compliant with the IRC only the 200# top rail load is applicable. On In-fill Panels:

Concentrated load = 50# on one sf.

Distributed load = 25 psf on area of in-fill, including spaces

Wind load is insignificant compared to live loading for most picket infill guard

applications. A design professional should determine if wind loading is significant for a specific application.

Refer to IBC Section 1607.9.1 for loading.

The Aluminum Guard Rail System is engineered to the following codes and standards:

2024 California Building and Residential Codes

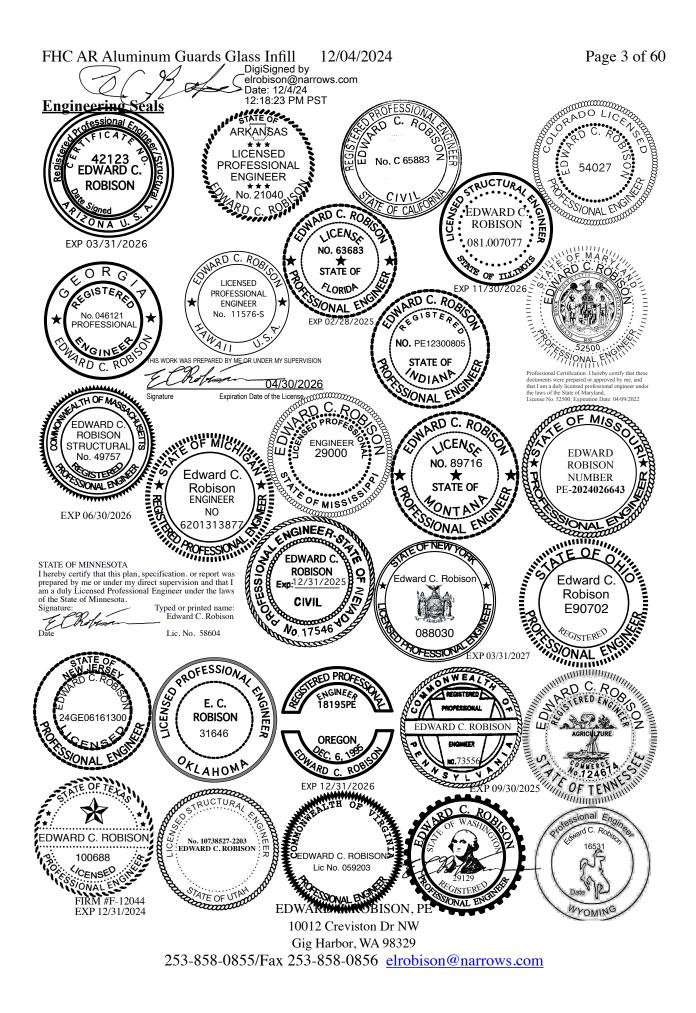
2021 Washington Building and Residential Codes

2021 and 2024 International Building and Residential Codes

ASCE 7-16

2020 Aluminum Design Manual

Anchorage calculations are also engineered to the following codes:


2018 American Wood Council NDS

ACI 318-19

The information herein is intended to assist a qualified individual in designing a code compliant installation and may be used as a guide in performing a site specific design. It remains the responsibility of the Specifier to verify compliance with local building codes for the project specific conditions.

TABLE OF CONTENTS

Engineering Seals	3
Specifying For Wind Loading	4 - 8
Standard Installations	9 - 10
Load Cases	11
Glass Infill	12 - 16
2-3/8" Square Post	17 - 19
135° Post	20 - 21
Baseplate Connection to Post	22
Baseplate Mounted to Wood	23
Baseplate Mounted to Concrete	24 - 28
Core Mount	29 - 30
Fascia Bracket	31 - 33
Top Rails	34 - 55
Bottom Rail	56 - 60

SPECIFYING FOR WIND LOADING

The tables in this section are meant to be used by specifier's and bidders to determine preliminary maximum post spacings for their project. The tables are based on low, medium and high wind environments. Low wind environments are applications where the post reactions from the live load are greater than the reactions from the wind load. Medium wind applications covers most applications in the western part of the United States, non-special wind zones, at heights of 30 feet or less above the surrounding grade. The high wind applications cover most locations in the non-hurricane areas of the United States at heights of 60 feet or less above the surrounding grade. The tables assume the wind is calculated according to ASCE 7-16 Chapter 29 as wind acting on a freestanding fence. It is also assumed that the guard terminates at a return or wall and has a maximum length of 10 times the height of the rail.

Use Table 1 to determine if your application is a low, medium or high wind environment. Table 2 shows the allowable strength of the standard post mounting options and post spacing for the live load or low wind case (wind load where live load and wind load are equivalent). Tables 3 and 4 provide allowable post spacing for medium and high wind applications (wind controls). Tables 5A, 5B and 5C gives allowable wind pressure for various combinations of glass thickness, height and post spacing. Linear interpolation is permitted on these tables.

For installations more than 60 feet above adjacent grade, or on steep bluffs, cliffs or mountains, or in special wind zones a competent professional must determine the applicable wind loads on the guards. Tables 9 - 11 provide the strength and allowable wind loads for the glass options.

The wind speeds shown in the following table are basic wind speeds (ultimate) 3 second gust speed at 33 feet above the ground in Exposure C as specified in ASCE 7.

The exposure categories are as defined in ASCE 7:

Exposure B: Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of singe family dwellings or larger.

Exposure C : Open terrain with scattered obstructions including surface undulations or other irregularities having height generally less than 30 feet extending more than 1500 feet from the building site in any quadrant. Exposure C extends into adjacent Exposure B type terrain in the downwind direction for the distance of 1500 feet or 10 times the height of the building or structure, whichever is greater. This category includes open country and grasslands, and open water exposure for less than 1 mile.

Exposure D : Flat unobstructed areas exposed to wind flowing over open water for a distance of a least 1 mile. This exposure shall apply only to those buildings and other structures exposed to the wind coming from over the water. Exposure D extends inland from the shoreline a distance of 1500 feet or 10 times the height of the building or structure, whichever is greater."

Wind Environment For Specifier's Tables	Exposure B	Project Wind Criteria Exposure C	Exposure D		
	Guard is 30ft or less above grade AND				
	For 36" tall guard: The design wind speed is 120mph or less and the Exposure is B	For 36" tall guard: The design wind speed is 105mph or less and the Exposure is C	For 36" tall guard: The design wind speed is 95mph or less and the Exposure is D		
Low (live load controls, also use when picket or cable infill is specified.	For 42" tall guard: The design wind speed is 115mph or less and the Exposure is B	For 42" tall guard: The design wind speed is 95mph or less and the Exposure is C	For 42" tall guard: The design wind speed is 90mph or less and the Exposure is D		
See additional cable information on the	Gua	rd is 60ft or less above grade	AND		
following page.)	For 36" tall guard: The design wind speed is 110mph or less and the Exposure is B	For 36" tall guard: The design wind speed is 95mph or less and the Exposure is C	For 36" tall guard: The design wind speed is 90mph or less and the Exposure is D		
	For 42" tall guard: The design wind speed is 105mph or less and the Exposure is B	For 42" tall guard: The design wind speed is 90mph or less and the Exposure is C			
	Guard is 30ft or less above grade AND				
Maaliuma	The design wind speed is 140mph or less and the Exposure is B	The design wind speed is 115mph or less and the Exposure is C	The design wind speed is 110mph or less and the Exposure is D		
Medium	Guard is 60ft or less above grade AND				
	The design wind speed is 120mph or less and the Exposure is B	The design wind speed is 110mph or less and the Exposure is C	The design wind speed is 100mph or less and the Exposure is D		
	Guard is 30ft or less above grade AND				
	The design wind speed is 150mph or less and the Exposure is B	The design wind speed is 120mph or less and the Exposure is C	The design wind speed is 115mph or less and the Exposure is D		
High	Gua	rd is 60ft or less above grade	AND		
	The design wind speed is 130mph or less and the Exposure is B	The design wind speed is 115mph or less and the Exposure is C	The design wind speed is 110mph or less and the Exposure is D		

Table 1

Live Load and Low Wind Application					
Post Height, H (in)	Equivalent Wind Load in Pressure (psf)				
36	30.9				
Post Option	M _a (in-Ibs)	Allowable Post Spacing, S_a (in)			
Custom Anchorage Detail	19500	72			
Baseplate Mounted With Commercial Length Fasteners	10500	70			
Core Mounted	10900	72			
Baseplate Mounted With Residential Length Fasteners	7200	48			
Live Load and Low Wind Applic	ation				
-	ation Equivalent Wind Load in Pressure (psf)				
Live Load and Low Wind Applic	Equivalent Wind Load				
Live Load and Low Wind Applic Post Height, H (in)	Equivalent Wind Load in Pressure (psf)	Allowable Post Spacing, Sa (in)			
Live Load and Low Wind Applic Post Height, H (in) 42	Equivalent Wind Load in Pressure (psf) 26.4	Allowable Post Spacing, Sa (in)			
Live Load and Low Wind Applic Post Height, H (in) 42 Post Option	Equivalent Wind Load in Pressure (psf) 26.4 Ma (in-lbs)				
Live Load and Low Wind Applic Post Height, H (in) 42 Post Option Custom Anchorage Detail Baseplate Mounted With Commercial	Equivalent Wind Load in Pressure (psf) 26.4 Ma (in-lbs) 19500	72			

Table 2

Medium Wind Application					
Equivalent Wind Load in Pr	ressure (psf)		Post Height, H (in)		
	38.2	36	42	48	
Anchor Detail Option	Ma (in-Ibs)	Allowable Post Spacing, S_a (in)			
Custom Anchorage Detail	19500	72	72	59	
Baseplate Mounted With Commercial Length Fasteners	10500	57	42	32	
Core Mounted	10900	59	43	33	
Baseplate Mounted With Residential Length Fasteners	7200	39	28	22	

Table 3

Table 4

High Wind Application					
Equivalent Wind Load in P	ressure (psf)		Post Height, H (in)		
43.		36	42	48	
Post Option	M _a (in-lbs) Allowable Post Spacing, S _a (in)			S _a (in)	
Custom Anchorage Detail	19500	72	68	52	
Baseplate Mounted With Commercial Length Fasteners	10500	50	37	28	
Core Mounted	10900	52	38	29	
Baseplate Mounted With Residential Length Fasteners	7200	34	25	19	

Use the tables below if the wind pressure is known for your site. Check both the infill and the anchorage table appropriate for the application.

Tables 5A, 5B and 5C

Allowable Wind Load Accounting for 1/4"monolithic or 5/16" SG Laminated Glass, Top and Bottom Rails (psf)					
Bottom Rail Span, L (in)	Glass Infill Height, H (in)				
	33	39	45		
36	47	28	18		
48	47	28	18		
60	32	27	18		
72	21	18	16		
Allowable Wind Load Accounting for 3/8" Monolithic Or 7/16" SG Laminated Glass, Top and Bottom Rails (psf)					
Allowabl			G Laminated Glass,		
Allowabl Bottom Rail Span, L (in)			G Laminated Glass,		
Bottom Rail		l Bottom Rails (psf)	G Laminated Glass, 45		
Bottom Rail	Top and	l Bottom Rails (psf) Glass Infill Height, H (in)			
Bottom Rail Span, L (in)	Top and	Bottom Rails (psf) Glass Infill Height, H (in) 39	45		
Bottom Rail Span, L (in) 36	Top and 33 89	Bottom Rails (psf) Glass Infill Height, H (in) 39 76	45 66		

Allowable Wind Load Accounting for 1/2" Monolithic or 9/16" SG Laminated Glass, Top and Bottom Rails (psf)					
Bottom Rail Span, L (in)	Glass Infill Height, H (in)				
	33	39	45		
36	89	76	66		
48	50	43	37		
60	32	27	24		
72	21	18	16		

Table 6: Standard Post Installations:

This table does not account for wind loading. Use tables 1-5 on the previous pages to check wind loading.

Allowable Post Spacings:				
	Anchorage Type	Anchorage Fasteners	Allowable Post Spacing	
	Surface mount to wood	(4) 3/8"x4" Lag Screws	72"	
	Surface mount to concrete	(4) 3/8"x3-3/4" Hilti KH-EZ (Min edge distance = 3-1/2" to nearest anchor)	72"	
Residential	Fascia bracket to wood	(4) 3/8"x4" Lag Screws	72"	
Applications	Concrete core mount	Set 4" deep in 4" square or circle core or blockout	72"	
	Direct Fascia to wood	(2) 3/8" lag screws ¹	72"	
	Direct Fascia to concrete	(2) 3/8"x3-3/4" Hilti KH-EZ	72"	
	Surface mount to wood	(4) 3/8"x4" Lag Screws	48"	
	Surface mount to concrete	(4) 3/8"x3-3/4" Hilti KH-EZ (Min edge distance = 3-1/2" to nearest anchor)	48"	
	Surface mount to concrete	(4) 3/8"x5" Hilti KH-EZ(Min edge distance = 3-1/2" to nearest anchor)	60"	
Commercial	Fascia bracket to wood	(4) 3/8"x4" Lag Screws	48"	
Applications	Concrete core mount	Set 4" deep in 4" square or circle core or blockout	60"	
	Concrete core mount	Set 4-1/2" deep in 4" square or circle core or blockout	72"	
	Direct Fascia to wood	(2) 3/8" lag screws ²	72"	
	Direct Fascia to concrete	(2) 3/8"x5" Hilti KH-EZ	72"	

1) Required lengths of screws are: 4" for 4x10 min beam size that is weather protected, 5" for 6x10 min beam size that is not protected from weather or 6x8 min beam size that is protected from water. 6" for 6x8 min beam size that is not protected from weather.

2) Required lengths of screws are: 5" for 6x10 min beam size that is weather protected, 7" for 8x10 min beam size that is not protected from weather.

Table 7:	Standard	Тор	Rail Installations

Top Rail Engineering Properties The X-axis is taken as the horizontal axis and the Y-axis is the vertical axis.						
Top Rail	I _x (in ⁴) I _y (in ⁴) M _{a,x} (in-lbs) M _{a,y} (in-lbs) Allowable provide the span (Assumes max allowable free span) (in)					
X1	0.383	0.355	5130	4940	72	
X2	0.147	0.976	2480	3530	60	
X3	0.268	0.92	3090	3280	60	
X35	0.238	1.36	3250	6830	65	
X4	0.062	0.9	2480	11000	48	

LOAD CASES:

Dead load = 20 plf for 42" rail height or less.

Loading: Horizontal load to top rail from in-fill: 25 psf*H/2 Post moments $M_i = 25 psf*H/2*S*H=$ $= (25/2)*S*H^2$

For top rail loads: $M_c = 200\#*H$ $M_u = 50plf*S*H$

GLASS INFILL

The infill glass is recommended to be fully tempered glass with a mean modulus of rupture of 24,000psi or above. The glass must comply with Category II of the CPSC 16 CFR Part1201 or Class A of ANSI Z97.1. The FHC ARS guard system is compatible with monolithic or laminated panels. The compatible monolithic thicknesses are 1/4", 3/8" and 1/2". Additionally, the compatible laminated thicknesses are 5/16", 7/16" and 9/16". All laminated panels are assumed to be laminated with a SentryGlass interlayer.

h1 (in) (thickness of each ply)	h2 (in)	h _v (in) thickness of interlayer	E (psi) (Young's modulus of glass)	g (psi) (Assumed shear modulus of interlayer assumes high temperature)
0.102	0.102	0.06	10400000	1600
h _s (in)	h _{s;1} (in)	h _{s;2} (in)	I _s (in ⁴ /in)	
0.162	0.0810	0.0810	0.0013	
a (in)	Г	h _{ef;w} (in)	h _{1;ef;σ} (in)	h _{2;ef;} (in)
36	0.8716	0.2526	0.2575	0.2575

Table 8 - 1/4" (5/16") laminated glass

The laminated glass has higher effective thickness than the monolithic glass. The monolithic minimum glass thickness of 0.219" is assumed in design.

To meet the requirements of the IBC 2407.12 the glass used in the guardrail shall be designed using a safety factor of four for the live loads. For fully tempered glass, this results in an allowable design stress of 24,000psi/4 = 6,000psi. When designing for wind loads, the allowable glass stress is according to ASTM E1300 Table X7.1. Table X7.1 gives the allowable edge stress for fully tempered glass as 10,600psi. Even when glass is used in a guard, the allowable glass stress of 10,600psi is used when designing for wind loads. This is a generally accepted interpretation of the code, including by ICC-ES glass guard acceptance criteria.

All tables and recommendations in this report are based on fully tempered glass. If heat strengthened glass is used the allowable loads are to be multiplied by 0.43. Annealed glass is strictly prohibited and must not be used with this system for any application.

Glass minimum thickness, t _{min}	Design stress for live loads, F _{live} (psi)	Design stress for wind loads, F_{wind} (psi)	
0.219	6000	10600	576
Max live load moment = 50#*42"/4 (in-lbs/ft)	Allowable moment for wind loads, $M_{a,wind} = F_{wind}*2*t_{min}^2$ (in-lbs/ft)		
525	1017		
< 576"#/ft OK			

Table 9A - 1/4" Monolithic Glass

Allowable wind load = $\min(M_a * 8 * 12/(H^2), 384 * 10.4 * 10^6 * 0.219^3 * 12/(5 * 60 * H^3))$.

Table 9B - Allowable Wind Load 1/4" monolithic or 5/16" laminated glass

	Allowable Wind Load on Glass Infill (psf)			
	Glass Infill Height, H (in)			
	33 39			
Any Glass Width	47	28	18	

Allowable Wind Load Accounting for 1/4" Glass, Top and Bottom Rails (psf)				
Bottom Rail Span, L (in)	Glass Infill Height, H (in)			
	33	39	45	
36	47	28	18	
48	47	28	18	
60	32	27	18	
72	21	18	16	

Also check for 3/8" monolithic or 7/16" laminated glass.

Table 10A - 5/6 Wohohune of 7/10 Tahihitateu glass					
h₁ (in) (thickness of each ply)	h ₂ (in)	h _v (in) thickness of interlayer	E (psi) (Young's modulus of glass)	g (psi) (Assumed shear modulus of interlayer assumes high temperature)	
0.18	0.18	0.06	10400000	1600	
h₅ (in)	h _{s;1} (in)	h _{s;2} (in)	l₅ (in⁴/in)		
0.24	0.1200	0.1200	0.0052		
a (in)	Г	h _{ef;w} (in)	h _{1;ef;σ} (in)	h _{2;ef;} (in)	
36	0.7937	0.3937	0.4059	0.4059	

$t_{min} = 0.355$ " for 3/8" nominal. Check laminated: Table 10A - 3/8" Monolithic or 7/16" laminated glass

0.355" monolithic glass controls.

Glass minimum thickness, t _{min}	Design stress for live loads, F _{live} (psi)	Design stress for wind loads, F _{wind} (psi)	
0.355	6000	10600	1512
Max live load moment = 50#*42"/4 (in-lbs/ft)	Allowable moment for wind loads, $M_{a,wind} = F_{wind}*2*t_{min}^2$ (in-lbs/ft)		
525	2672		
< 576"#/ft OK			

Table 10B - Allowable Wind Load 3/8" monolithic or 7/16" laminated glass

	Allowable Wind Load on Glass Infill (psf)			
	Glass Infill Height, H (in)			
	33	39	45	
Any Glass Width	199	120	78	

Allowable Wind Load Accounting for 3/8" Monolithic Or 7/16" SG Laminated Glass, Top and Bottom Rails (psf)					
Bottom Rail Span, L (in)	Glass Infill Height, H (in)				
	33	39	45		
36	89	76	66		
48	50	43	37		
60	32	27	24		
72	21	18	16		

Table 10B - Continued

Also check for 1/2" monolithic or 9/16" laminated glass.

 $t_{min} = 0.469$ " for " nominal. Check laminated:

Table 11A - 1/2" Monolithic or 9/16" laminated glass

h1 (in) (thickness of each ply)	h2 (in)	h _v (in) thickness of interlayer	E (psi) (Young's modulus of glass)	g (psi) (Assumed shear modulus of interlayer
0.219	0.219	0.06	10400000	1600
h _s (in)	h _{s;1} (in)	h _{s;2} (in)	l₅ (in⁴/in)	
0.279	0.1395	0.1395	0.0085	
a (in)	Г	h _{ef;w} (in)	h _{1;ef;σ} (in)	h _{2;ef;} (in)
36	0.7597	0.4622	0.4786	0.4786

0.469" monolithic glass controls for stress

Glass minimum thickness, t _{min}	Design stress for live loads, F _{live} (psi)	Design stress for wind loads, F_{wind} (psi)	
0.469	6000	10600	2640
Max live load moment = 50#*42"/4 (in-lbs/ft)	Allowable moment for wind loads, $M_{a,wind} =$ $F_{wind}*2*t_{min}^2$ (in-lbs/ft)		
525	4663		
< 2,640"#/ft OK			

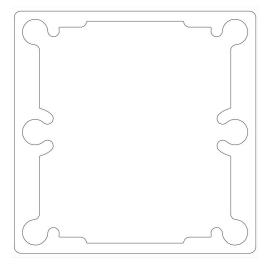

	Allowable Wind Load on Glass Infill (psf)			
	Glass Infill Height, H (in)			
	33	39	45	
Any Glass Width	199 120 78			

Table 11B - Allowable Wind Load 1/2" monolithic or 9/16" laminated glass

Allowa	Allowable Wind Load Accounting for 1/2" Monolithic or 9/16" Laminated Glass, Top and Bottom Rails (psf)					
Bottom Rail Span, L (in)						
	33	39	45			
36	89	76	66			
48	50	43	37			
60	32	27	24			
72	21	18	16			

POST DESIGN - 2-3/8" Square

Post flexural strength is calculated according to the 2020 Aluminum Design Manual Chapter F. Possible failure modes are local buckling, lateral torsional buckling and yielding. The aluminum alloy is 6005-T61A.

6005-T61 Aluminum. Local buckling of flange element supported on both sides.					
S (in ³)	Z (in ³)	b (in)	t (in)		
1.13	1.35	2.2	0.24		
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
9.167	For $\lambda \le 20.8$, F _c / $\Omega = 21.2$ ksi For yielding, Strength is controlled by rupture, F/ $\Omega = 38$ ksi/1.95 = 19.5ksi.				
F₀/Ω (ksi)	For 20.8 < λ < 33, F _c / Ω = 27.3-0.291 λ				
19.5 For $\lambda \ge 33$, $F_c/\Omega = 580/\lambda$					
If $\lambda \le 20.8$, local buck that for 6005-T61A F _u /(ling does not control a k _t Ω) < F _y /Ω.	nd the strength is con	trolled by ZF/Ω. Note		

If $\lambda > 20.8$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
26.325	26325	

The above calculations show that local buckling does not control. Lateral torsional buckling calculations are shown on the following page and will control design. Because the post is square it may be appropriate to design to the yield strength rather than the lateral torsional buckling strength. Engineering judgment should be used to determine if the specific installation is susceptible to a lateral torsional buckling failure. In this report, allowable spacing tables are based on the more conservative lateral torsional buckling.

6005-T61 Alum						
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)		
1.13	1.35	10100000	1.42	0.029		
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)		
0	1.04	25000	65.7	33750		
Any loading dis	tribution:					
C _b	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$		
1.3	0	1	-1.1875	0		
F.4.2.5 Any Sha	F.4.2.5 Any Shape					
$\lambda = \pi \sqrt{(ES/(C_b M_e))}$						
$M_{e} = \pi^{2} E I_{y} / (L_{b}^{2}) (U + \sqrt{(U^{2} + 0.038 J L_{b}^{2} / I_{y} + C_{w} / I_{y})}) \text{ (in-lbs)}$						
$M_{nmb} = M_{np}(1 - \lambda/C)$	$M_{nmb} = M_{np}(1 - \lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)					

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

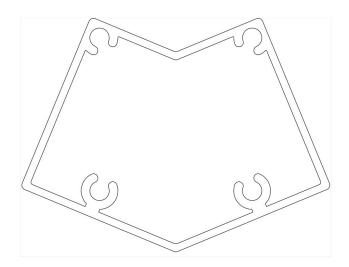
Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	984385.1	9.4	32657.0	19792
36	656086.8	11.5	32411.1	19643
42	562329.2	12.4	32303.8	19578
48	492020.5	13.3	32203.9	19518
60	393599.8	14.8	32021.4	19407
72	327992.4	16.3	31856.4	19307

For typical 42" post height, $M_a = 19,600$ "#

Post under weak axis bending:

6005-T61 Aluminum. Local buckling of flange element supported on both sides.				
S (in ³)	Z (in ³)	b (in)	t (in)	
0.871	1.12	0.937	0.1	
$\lambda = b/t$	Allowable compre- to ADM 2020 Desig	ssion stress is calc yn Table 2-21	ulated according	
9.37	For $\lambda \le 20.8$, F _c / $\Omega = 21.2$ ksi For yielding, Strength is controlled by rupture, F/ $\Omega = 38$ ksi/1.95 = 19.5ksi.			
F_c/Ω (ksi) For 20.8 < λ < 33, F _c /Ω = 27.3-0.291 λ				
19.5 For $\lambda \ge 33$, $F_c/\Omega = 580/\lambda$				
If $\lambda \le 20.8$, local buck	ling does not control a	and the strength is con	trolled by ZF/Ω. Note	


that for 6005-T61A $F_u/(k_t\Omega) < F_y/\Omega$.

If $\lambda > 20.8$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
21.84	21840	

135° x 2.375" Post

First calculate moment strength about the strong axis. $I_x = 1.90 \text{ in}^4$ $S_x = 0.956 \text{ in}^3$ $Z_x = 1.45 \text{ in}^3$ $I_y = 1.26 \text{ in}^4$ b = 1.97"t = 0.1" $C_w = 0.0342 \text{ in}^6$ $\beta = -0.0157 \text{ in}$ $g_0 = 0 \text{ in}$

6005-T61 Aluminum. Local buckling of flange element supported on both sides.

S (in ³)	Z (in ³)	b (in)	t (in)		
0.935	1.39	1.97	0.1		
$\lambda = b/t$	Allowable compression ADM 2020 Design	ssion stress is calc yn Table 2-21	ulated according		
19.7	For $\lambda \le 20.8$, $F_c/\Omega = 21.2$ ksi For yielding, Strength is controlled by rupture, $F/\Omega = 38$ ksi/1.95 = 19.5ksi.				
F₀/Ω (ksi)	For 20.8 < λ < 33, F	$F_{c}/\Omega = 27.3 - 0.291 \lambda$			
19.5	For $\lambda \ge 33$, $F_c/\Omega = 58$	60/ λ			

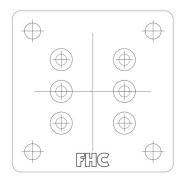
If $\lambda \le 20.8$, local buckling does not control and the strength is controlled by ZF/ Ω . Note that for 6005-T61A F_u/(k_t Ω) < F_y/ Ω .

If $\lambda > 20.8$, local buckling controls and the strength is calculated as F_c/Ω^*S .

Ma(in-kips)	Ma(in-Ibs)	
27.105	27105	

As this post has greater strength than the standard post it will not govern post spacing.

6005-T61 Alum					
S _x (in ³)	Z _x (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)	
0.956	1.45	10100000	2.0	0.039	
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- lbs)	
0	1.26	25000	65.7	36250	
Any loading dis	tribution:				
C _b	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$	
1.3	0	1	-1.5	0	
F.4.2.5 Any Shap	De				
$\lambda = \pi \sqrt{(ES/(C_b M_e))}$					
$M_{e} = \pi^{2} E I_{y} / (L_{b}^{2}) (U + \sqrt{(U^{2} + 0.038 J L_{b}^{2} / I_{y} + C_{w} / I_{y})}) \text{ (in-lbs)}$					
$M_{nmb} = M_{np}(1 - \lambda/C)$	$f_c)+\pi^2 E\lambda S_{xc}/C_c^3$ for	$\lambda < C_c$ (in-lbs)			


 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	1285865	7.550	34621	20983
36	857031	9.248	34255	20761
42	734560	9.990	34095	20664
48	642718	10.680	33946	20573
60	514154	11.940	33674	20409
72	428452	13.080	33428	20260

CONNECTION TO BASEPLATE

5/16"x2" Type F 410 SS fasteners with MagniCoat finish. The MagniCoat finish provides galvanic separation between the fastener and aluminum.

Tested Strength with four screws (lbs)	Tested strength with six screws (lbs)	Safety factor, Ω	Load height above baseplate (in)
731	861	2.5	40
Allowable moment load on connection with four screws (lbs)	Allowable moment load on connection with six screws (lbs)		
11696	13776		

BASEPLATE MOUNTED TO WOOD – SINGLE FAMILY RESIDENCE

For 200# top load and 36" post height: M = 200#*36" = 7,200"# $T_{200} = \frac{7,200}{2*4.36"} = 826#$

Assume Hem-fir, G = 0.43Adjustment for wood bearing: Bearing Area Factor: $C_b = (5"+0.375)/5" = 1.075$ a = 2*826#/(1.075*625psi*5")= 0.492"T = 7,200/[2*(4.36-0.49/2)]= 875#

Required embed depth: Based on NDS Table 11.2A for 3/8" lag screws into Hem-fir, G = 0.43W = 253pli W' = WC_DC_m = 243*1.6*1.0 = 389 pli for dry conditions W' = WC_DC_m = 243*1.6*0.7 = 272 pli for wet conditions

For protected installations the minimum embedment is: $l_e = 875\#/389\#/in = 2.25"$: +7/32" for tip = 2.47"

For weather exposed installations the minimum embedment is: $l_e = 875\#/272\#/in = 3.22$ ": +7/32" for tip = 3.44" FOR WEATHER EXPOSED INSTALLATIONS USE 5" LAG SCREWS AND INCREASE BLOCKING TO 4.5" MINIMUM THICKNESS.

For 42" guard height and 200# load increase lag screw embedment to: e = 42/36*2.25"+7/32 = 2.85" for dry conditions e = 2.85/0.7 = 4.06" for wet conditions Lag screw length shall be as needed to achieve the required embedment into solid wood.

Alternative anchorage may be designed for the specific project conditions to include post loading, lumber species and exposure conditions.

For guards subject to the requirements of the International Residential code post spacing may be up to 6' on center.

BASE PLATE MOUNTED TO CONCRETE

Anchor options for baseplate surface mounts are summarized in the table below. Calculations for each option are shown on the following pages. The residential and commercial applications both assume a max top rail height of 42". The commercial application must resist the 50 pounds per foot uniform load or the 200 pound concentrated load. The residential application only needs to resist the 200 pound concentrated load.

Anchor Option Summary					
Anchor option	Allowable spacing for commercial applications (feet)	Allowable spacing for residential applications (feet)			
(4) 3/8"x3-3/4" US Ultrawedge Anchors	4	6			
(4) 3/8"x5" US Ultrawedge Anchors	5	6			
(4) 3/8"x4" Hilti KH-EZ Anchors	4	6			
(4) 3/8"x5" Hilti KH-EZ Anchors	5	6			

Also verify spacing for wind loads.

f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	2.5	3.5	3.75		4.75	0.375
Area calculations, a anchors in tension	assumes two					
A _{Vc} (in ²)	Anc (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
67.6875	81.5625	55.125	56.25			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0513	2247	2900
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{ m c,N}$	$\Psi_{\mathrm{cp,N}}$	N _b	N _{cbg} (lbs)
	1	0.98	1	1	3681	5230
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	10460				
Also check pullout:	Pullout from crack (lbs)	ted concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1178	200	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail				
2125	0	Pass				
Baseplate effective width, be (in)	Lever arm to anchor, d (in)	$a=T_{n,min}/(0.85f'cbc)$ (in)	øMn/ALF=øTn/ ALF*(d-a/2) (in- lbs)	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375	0.41	8860	8400	1.118	
				Pass	<1.2 Pass	

Baseplate with moment anchorage. Concrete failure modes are according to ACI 318-19 Chapter 17. Post installed anchors. Assume Hilti KH-EZ per ESR 3027.

Baseplate with mor EZ per ESR 3027.	nent anchorage. Con	crete failure modes a	re according to ACI 3	318-19 Chapter 17. P	ost installed anchors.	Assume Hilti KH-
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	3.55	3.5	3.75		4.75	0.375
Area calculations, a anchors in tension	assumes two					
A _{Vc} (in ²)	Anc (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
67.6875	127.08	55.125	113.4225			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$arPsi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0513	2410	3111
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{ m c,N}$	$\Psi_{ m cp,N}$	Nb	N _{cbg} (lbs)
	1	0.89718309859154	1	1	6228	6261
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	12521				
Also check pullout:	Pullout from cracke (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1264	250	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail				
2543	0	Pass				
Baseplate effective width, be (in)	Lever arm to anchor, d (in)	$a=T_{n,min}/(0.85f'_{c}b_{c})$ (in)	øMn/ALF=øTn/ ALF*(d-a/2) (in- lbs)	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375	0.49	10503	10500	1.198	
				Pass	<1.2 Pass	

Also check 3/8" US Ultrawedge Anchors:

Standard lengths are 3-3/4" or 5". For 3/8" and 3-3/4" long anchor baseplate, $h_{nom} = 3.75$ "-0.5"-0.375" = 2.875". $h_{ef} = 2.875$ "-0.375" = 2.5".

Baseplate with moment anchorage. Concrete failure modes are according to ACI 318-19 Chapter 17. Post installed anchors. Assume US Ultrawedge per ESR 3981.

Ultrawedge per ES	R 3981.					
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
	2.5	3.5	3.75		4.75	0.375
Area calculations, anchors in tension	assumes two					
Avc (in ²)	Anc (in ²)	Avo (in ²)	A _{No} (in ²)			
67.6875	81.5625	55.125	56.25			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$\Psi_{\rm h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0513	0	0
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{\rm ed,N}$	$\Psi_{\rm c,N}$	$\Psi_{\mathrm{cp,N}}$	N _b	N _{cbg} (lbs)
	1	0.98	1	1	0	0
Shear pryout	kcp	V _{cbg} (lbs)				
	2	0				
Also check pullout:	Pullout from crack (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øVn/ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	0	200	Fail	
øT _n /ALF (lbs)	T (lbs)	Pass/Fail				
0	0	Fail				
Baseplate effective width, b _e (in)	Lever arm to anchor, d (in)	$a=T_{n,min}/(0.85f'_{c}b_{c})$ (in)	øMn/ALF=øTn/ ALF*(d-a/2) (in- lbs)	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375			8400		

Baseplate with mor Ultrawedge per ES	nent anchorage. Cono R 3981.	crete failure modes ar	re according to ACI 3	818-19 Chapter 17. Po	ost installed anchors.	Assume US
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	3.75	3.5	3.75		4.75	0.375
Area calculations, a anchors in tension	issumes two					
A _{Vc} (in ²)	Anc (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
67.6875	136.875	55.125	126.5625			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0513	2437	3145
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{ m c,N}$	$\Psi_{ m cp,N}$	N _b	N _{cbg} (lbs)
	1	0.886666666666666	1	1	6762	6484
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	12968				
Also check pullout:	Pullout from cracke (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1278	250	Pass	
øT _n /ALF (lbs)	T (lbs)	Pass/Fail				
2634	0	Pass				
Baseplate effective width, b _e (in)	Lever arm to anchor, d (in)	$a=T_{n,min}/(0.85f'_{c}b_{e})$ (in)	øMn/ALF=øTn/ ALF*(d-a/2) (in- lbs)	M _{max} (in-lbs)	Combined, M/ M _a +T/T _a +V/V _a < 1.2	
5	4.375	0.51	10854	10500	1.163	
				Pass	<1.2 Pass	

For 5" long anchor, $h_{ef} = 5$ "-0.5"-0.375"-0.375" = 3.75".

Core Mounted Posts

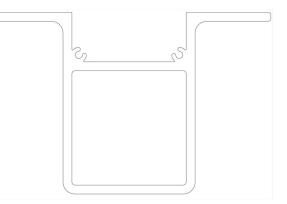
Mounted in either 4"x4"x4" blockout, or 4" to 6" dia by 4" minimum deep cored hole. Core mount okay for 6' post spacing.

Assumed concrete strength 2,500 psi for existing concrete and 3,000 psi for grout

Max load $-6' \cdot 50 \text{ plf} = 300\#$

 $M = 300 # \cdot 42" = 12,600" #$

Or M = 250#*42" = 10,500"# for 5' max spacing


Maximum post spacing = 5' commercial or 6' residential (for 6' commercial max post spacing see higher embedment option on the following page)

CONCRETE CORE MOUNT Failure modes are concrete crushing or shear breakout.							
Core width (in), b _c	Stanchion width (in), b_s	Grout strength (psi), f'c	Edge distance (in), c	Embedment (in), d			
4	2.375	3000	3.8	4			
Edge breakout calcula	tions						
Breakout width (in), $b_B = b_s+c$	Breakout height (in), H = $d/2+c/2$	$\beta = b_B/H$	Perimeter (in), b ₀ = b _B +2H	α_s Three sided breakout			
6.175	3.9	1.583	13.975	30			
λ	4λ(f'c) ^{0.5}	$(2+4/\beta)\lambda(f'_c)^{0.5}$	$(2+\alpha_sC/b_0)\lambda(f'{}_c)^{0.5}$	v _c = minimum of previous three cells (psi)			
1	219.09	247.917	556.35	219.09			
$V_n = v_c b_0 c$ (lbs)	$V_a = \emptyset V_n / LF = 0.75 V_n / 1.6 \text{ (lbs)}$						
11635	5454						
Concrete Crushing Ca	lculations						
Bearing width (in), $b_b = min(b_s+b_c/2,b_c)$	Breakout height (in), H = min(d/2+b_c/4,d)	$P_n = 0.85 b_b Hf'_c (lbs)$	$P_a = \phi P_n / LF = 0.65 P_n / 1.6$				
4	3	30600	12431.25				
Allowable Moment Ca	Allowable Moment Calculation						
$M_a = \min(V_a, P_a) * d/2$ (in-lbs)	M _{max} = 50plf*5'*42"						
10908	10500	OK					

	L /				
CONCRETE CORE M Failure modes are con	IOUNT crete crushing or shear	breakout.			
Core width (in), b _c	Stanchion width (in), b_s	Grout strength (psi), f'c	Edge distance (in), c	Embedment (in), d	
4	2.375	3000	3.8	4.5	
Edge breakout calcula	tions				
Breakout width (in), $b_B = b_s + c$	Breakout height (in), H = $d/2+c/2$	$\beta = b_{\rm B}/{\rm H}$	Perimeter (in), $b_0 = b_B+2H$	$\alpha_{\rm s}$ Three sided breakout	
6.175	4.15	1.488	14.475	30	
λ	4λ(f' _c) ^{0.5}	$(2+4/\beta)\lambda(f'_c)^{0.5}$	$(2+\alpha_s C/b_0)\lambda(f'_c)^{0.5}$	v _c = minimum of previous three cells (psi)	
1	219.089	256.787	540.911	219.089	
$V_n = v_c b_0 c \ (lbs)$	$V_a = \emptyset V_n / LF = 0.75 V_n / 1.6 \text{ (lbs)}$				
12051	5649				
Concrete Crushing Ca	lculations				
Bearing width (in), $b_b = min(b_s+b_c/2,b_c)$	Breakout height (in), H = min(d/2+b_c/4,d)	$P_n = 0.85 b_b Hf'_c (lbs)$	$\begin{split} P_a &= \varnothing P_n/LF = \\ 0.65 P_n/1.6 \end{split}$		
4	3.25	33150	13467.1875		
Allowable Moment Calculation					
$\begin{split} M_{a} &= \min(V_{a}, P_{a})^{*}d/2 \\ (\text{in-lbs}) \end{split}$	M _{max} = 50plf*6'*42"				
12710	12600	ОК			

For 6' O.C. commercial option, use 4-1/2" minimum embedment

FASCIA MOUNTED POSTS WITH FASCIA BOOT

For Fascia boot, the post slides inside the boot and the boot is connected to the structure with (4) 3/8" lag screws or concrete anchors.

Assume upper anchors are 4" below the walking surface max	Max post spacing for residential (ft)	Max post spacing for commercial (ft)	
	6	5	
Upper anchors are at least 5" above the bottom of the bracket	T _{residential} = (36"+9")/5" *200#	T _{commercial} = (42"+9")/5" *50plf*S	
	1800	2550	

For anchorage to wood: 3/8" lag screws	Recall W' for dry applications	W' for wet applications	
	389	272	
Required penetration for residential dry applications	Required penetration for residential wet applications	Required penetration for commercial dry applications	Required penetration for commercial wet applications
2.53	3.53	3.50	4.91

Also check 3/8" US Ultrawedge Anchors:

Standard lengths are 3-3/4" or 5". For 3/16" bracket and 3-3/4" long anchor baseplate, $h_{nom} = 3.75$ "-0.5"-0.1875" = 3.06". $h_{ef} = 3.06$ "-0.375" = 2.69".

Baseplate with moment anchorage. Concrete failure modes are according to ACI 318-19 Chapter 17. Post installed anchors. Assume US Ultrawedge per ESR 3981.

Ultrawedge per ES	R 3981.					
f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3000	2.69	2.5	4.5		4.75	0.375
Area calculations, anchors in tension	assumes two					
Avc (in ²)	Anc (in ²)	Avo (in ²)	A _{No} (in ²)			
45	82.14495	28.125	65.1249			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0000	1376	2202
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{ m c,N}$	$\Psi_{ m cp,N}$	N _b	N _{cbg} (lbs)
	1	0.88587360594795	1	1	4108	4590
Shear pryout	kcp	V _{cbg} (lbs)				
	2	9181				
Also check pullout:	Pullout from cracke (lbs)	ed concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øVn/ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	895	200	Pass	
øT _n /ALF (lbs)	T (lbs)	Pass/Fail	Combined, M/ M _a +T/T _a +V/V _a < 1.2			
1865	1800	Pass	1.189			
			<1.2 Pass			

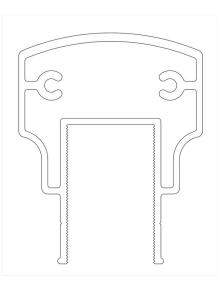
OK for residential

f'c (psi)	hef (in)	Edge distance to nearest anchors (in)	Anchor spacing parallel with edge (in)		Concrete thickness (in)	D (in)
3500	3.94	2.5	4.5		4.75	0.375
Area calculations, a anchors in tension	assumes two					
A _{Vc} (in ²)	A _{nc} (in ²)	A _{vo} (in ²)	A _{No} (in ²)			
45	137.2512	28.125	139.7124			
Shear breakout	$\Psi_{ m ec,V}$	$\Psi_{ m ed,V}$	$\Psi_{ m c,V}$	$\Psi_{ m h,V}$	V _b	V _{cbg} (lbs)
	1	1	1	1.0000	1605	2567
Tension breakout	$\Psi_{ m ec,N}$	$\Psi_{ m ed,N}$	$\Psi_{ m c,N}$	$\Psi_{ m cp,N}$	N _b	N _{cbg} (lbs)
	1	0.82690355329949	1	1	7866	6389
Shear pryout	k _{cp}	V _{cbg} (lbs)				
	2	12779				
Also check pullout:	Pullout from crack (lbs)	red concrete, N _{p,cr}				
	N/A does not control					
Ø Tension	Ø Shear	Also divide by 1.6 to convert to ASD. ALF	øV _n /ALF (lbs)	V (lbs)	Pass/Fail	
0.65	0.65	1.6	1043	200	Pass	
øTn/ALF (lbs)	T (lbs)	Pass/Fail	Combined, M/ M _a +T/T _a +V/V _a < 1.2			
2596	2550	Pass	1.174			
			<1.2 Pass			

For 5" long anchor, $h_{ef} = 5$ "-0.5"-0.1875"-0.375" = 3.94".

OK for commercial

TOP RAILS


A top rail is required for all installations. The railing system may be used with the X1, X2, X3, X35 and X4 top rails. The maximum post spacing allowed for picket rail is 72" but the top rail may limit the allowable spacing further.

The top rail must hold the 200# or 50plf uniform live loads. For the 200# live load, maximum moment M = 200#L/4 where L is the post spacing. For the 50plf live load, maximum moment M = $(50plf/12)L^{2}/8$ where L is the post spacing in inches. By setting equations equal to each other, $(50plf/12)L^{2}/8=200L/4$, the span where 50plf live load controls over the 200# concentrated load can be solved. Solving for L gives L = 96" which is greater than the maximum post spacing of 72". Therefore, for all considered spans the 200# live load at center span will control.

Top Rail Engineering Properties The X-axis is taken as the horizontal axis and the Y-axis is the vertical axis.					
Top Rail	I _x (in ⁴)	I _y (in ⁴)	M _{a,x} (in-lbs) (Assumes max allowable free span)	M _{a,y} (in-lbs) (Assumes max allowable free span)	Allowable post spacing/ Allowable span (in)
X1	0.383	0.355	5130	4940	72
X2	0.147	0.976	2480	3530	60
X3	0.268	0.92	3090	3280	60
X35	0.238	1.36	3250	6830	65
X4	0.062	0.9	2480	11000	48

X1

First check vertical bending:

X1 Vertical loading, local buckling of round hollow element under flexural compression				
S _c (in ³)	Z (in ³)	R _b (in)	t (in)	
0.225	0.614	2.41	0.125	
$\lambda = (\mathbf{R}_{\rm b}/t)^{1/2}$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21			
4.39089968002003	For $\lambda \le 8.4$, $F_c/\Omega = 2^{-1}$	7.7ksi-0.17 λ		

22.7 For $\lambda \ge 13.7$, $F_c/\Omega = 3776/(\lambda^2(1+\lambda/35)^2)$

If $\lambda \le 8.4$, local buckling does not control and the strength is controlled by min(ZF_y/ Ω ,1.5SF_y).

If $\lambda > 8.4$, local buckling may control both the local buckling strength (F_c/ Ω *S) and the vielding strength must be assessed.

F _y /Ω (ksi)	ZF _y /Ω(in-kips)	SF_c/Ω (in-kips) (Only applies if > 6.5)	M _a (in-lbs) = min(1.5SF _y /Ω,ZF _y / Ω, SF _c /Ω)*1000
15.2	9.3328	N/A	5130

X1 Vertical loa				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.247	0.468	10100000	0.157	0.108
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
-2.22	0.355	25000	78	11700

Uniform Load on Simple Span (more conservative than point load at center span)

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.14	0.5	0.5	0	-0.555

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	163001	11.511	10571	6406
36	114055	13.761	10350	6273
42	99215	14.754	10252	6214
48	87801	15.684	10161	6158
60	71389	17.394	9993	6057
72	60150	18.949	9841	5964

X1 horizontal loading, Lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.355	0.503	10100000	0.157	0.108
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
0	0.383	25000	78	12575

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.14	0.5	0.5	-1	-0.5

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	171201	13.465	11408	6914
36	119364	16.126	11178	6774
42	103724	17.300	11076	6713
48	91718	18.397	10981	6655
60	74490	20.414	10806	6549
72	62716	22.248	10647	6453

X1 horizontal loading, local buckling of flange element supported on both sides.						
S _c (in ³)	Z (in ³) b (in) t (in)					
0.237	0.325	0.743	0.125			
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21					
5.944	For $\lambda \leq 22.8$, $F_c/\Omega = 10^{-1}$	15.2ksi				
F₀/Ω (ksi)	For 22.9 < λ < 39, F	-c/Ω = 19.0-0.170 λ				
15.2	For $\lambda \ge 39$, $F_c/\Omega = 48$	4/λ				
If $\lambda \le 22.8$, local buck	ling does not control a	and the strength is con	trolled by ZF _y /Ω.			
If λ > 22.8, local buckling controls and the strength is calculated as F _c / Ω *S.						
M _a (in-kips)	M _a (in-Ibs)					
4.94	4940					

Top rail X2

X2 Vertical loading, local buckling of round hollow element under flexural compression				
S _c (in ³)	Z (in ³)	R _b (in)	t (in)	
0.15	0.264	1.375	0.125	
$\lambda = (R_b/t)^{1/2}$	Allowable compre- to ADM 2020 Desig	ssion stress is calc yn Table 2-21	ulated according	
3.3166247903554	For $\lambda \leq 8.4$, $F_c/\Omega = 27.7$ ksi-0.17 λ			
F₀/Ω (ksi)	For 8.4 < λ < 13.7, F _c /Ω = 18.5-0.593 λ			
22.7	For $\lambda \ge 13.7$, F _c /Ω = 3776/($\lambda^2(1+\lambda/35)^2$)			
If $\lambda \le 8.4$, local buckling does not control and the strength is controlled by min(ZF _y / Ω ,1.5SF _y).				

If $\lambda > 8.4$, local buckling may control both the local buckling strength (F_c/ Ω *S) and the yielding strength must be assessed.

F _y /Ω (ksi)	ZF _y /Ω(in-kips)	SF_c/Ω (in-kips) (Only applies if > 6.5)	$M_{a}(\text{in-lbs}) = min(1.5SF_{y}/\Omega, ZF_{y}/\Omega, SF_{c}/\Omega)*1000$
15.2	4.0128	N/A	3420

X2 Vertical loading, lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.15	0.264	10100000	0.001	0.279
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
-3.494	0.976	25000	78	6600

C _b	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.14	0.5	0.5	0	-0.8735

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	27284	21.926	5436	3294
36	13136	31.599	4922	2983
42	10128	35.986	4689	2842
48	8172	40.062	4472	2711
60	5862	47.300	4088	2478
72	4595	53.426	3763	2280

X2 Horizontal loading, lateral torsional buckling:				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.651	0.777	10100000	0.001	0.279
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
0	0.147	25000	78	19425

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.14	0.5	0.5	-1	-0.5

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

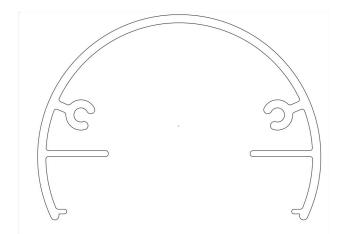
 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	25835	46.940	14154	8578
36	12163	68.411	11743	7117
42	9251	78.442	10546	6392
48	7354	87.978	8384	5081
60	5107	105.580	5822	3528
72	3866	121.347	4407	2671

X2 Horizontal loading direct buckling analysis


For local buckling use the continuous strength method. SCIA Engineer is used to create a 3D model of the flange. The model uses a 3rd order non-linear analysis that accounts for large deflections.

The supported edge of the leg is assumed to be able slide in the direction of the length of the top rail. The model uses a 3rd order non-linear analysis that accounts for large deflections and buckling modes. A 72" length of the element is created with a uniform load at one end that is factored until the element is either unable to bear the load or experiences high lateral displacement. The aluminum is assumed to be elastic so the buckling stress found is the elastic buckling stress, F_e , which is used with the provisions of ADM B.5.5.5 to determine the allowable compression stress.

Element area, $A_e = Lt$ (in ²)	Total load applied to model, P _{cr} (lbs)	Elastic buckling stress, F_{e} = $P_{cr}/$ A_{e} (psi)
0.234	1990	8504

X2 Horizontal loading, Direct Strength Method					
S (in ³)	Z (in ³)	F _e (ksi)	E (ksi)		
0.651	0.777	8.50	10100		
B _p = F _{cy} (1+(F _{cy} / (1500ksi)) ^{1/3})	$D_p = B_p / 10^* (B_p / E)^{1/2}$	k 1	F _{cy} (ksi)		
31.386	0.175	0.35	25		
k 2	$\lambda_{eq} = \pi (E/F_e)^{1/2}$	$\lambda_1 = (B_p - F_{cy})/D_p$	$\lambda_2 = (k_1 B_p)/D_p$		
2.27	108.266	36.499	62.786		
	For $\lambda_{eq} \leq \lambda_1$	For $\lambda_1 < \lambda_{eq} \le \lambda_2$	For $\lambda_{eq} \geq \lambda_2$		
F _c formula(ksi)	F _{cy}	$B_p-D_p \lambda_{eq}$	$k_2(B_pE)^{1/2}/\lambda_{eq}$		
F _c (ksi) =	25	12.444	11.805		
F _c , controlling	$F_c/\Omega = F_c/1.65$				
11.8	7.2				
If $\lambda_{eq} \leq \lambda_1$ local buckling does not control and the strength is controlled by ZF_y/Ω .					
If $\lambda_{eq} > \lambda_1$, local buckling controls and the strength is calculated as F_c/Ω^*S .					
M _a (in-kips)	M _a (in-lbs)				
7.68	7685				

X3 Vertical bending:

X3 Vertical loading	g, local buckling of	flange element sup	ported on both
sides.			

S _c (in ³) (Assumes downward loading)	Z (in ³)	b (in)	t (in)		
0.225	0.37	1.25	0.07		
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
17.9	For $\lambda \leq 22.8$, $F_c/\Omega = 15.2$ ksi				
F₀/Ω (ksi)	For 22.9 < λ < 39, F _c / Ω = 19.0-0.170 λ				
15.2	For $\lambda \ge 39$, $F_c/\Omega = 484/\lambda$				
If $\lambda \leq 22.8$, local buckling does not control and the strength is controlled by ZF_y/Ω .					
If λ > 22.8, local buckling controls and the strength is calculated as F _c / Ω *S.					
M _e (in-kins)	M _o (in-lbs)				

M _a (in-kips)	M _a (in-Ibs)	
5.624	5624	

X3 Vertical loa				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.225	0.370	10100000	0.002	0.251
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
-4.371	0.92	25000	78	9250

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.32	0.5	0.5	0	-1.09275

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	21957	27.818	7266	4404
36	11452	38.519	6503	3941
42	9210	42.952	6186	3749
48	7746	46.837	5909	3581
60	6000	53.216	5454	3306
72	5022	58.165	5101	3092

X3 Horizontal loading direct buckling analysis

For local buckling use the continuous strength method. SCIA Engineer is used to create a 3D model of the flange. The model uses a 3rd order non-linear analysis that accounts for large deflections.

The supported edge of the leg is assumed to be able slide in the direction of the length of the top rail. The model uses a 3rd order non-linear analysis that accounts for large deflections and buckling modes. A 72" length of the element is created with a uniform load at one end that is factored until the element is either unable to bear the load or experiences high lateral displacement. The aluminum is assumed to be elastic so the buckling stress found is the elastic buckling stress, F_e , which is used with the provisions of ADM B.5.5.5 to determine the allowable compression stress.

Element area, $A_e = Lt$ (in ²)	Total load applied to model, P _{cr} (lbs)	Elastic buckling stress, $F_{\rm e}$ = $P_{\rm cr}/$ $A_{\rm e}(psi)$
0.366	3050	8333

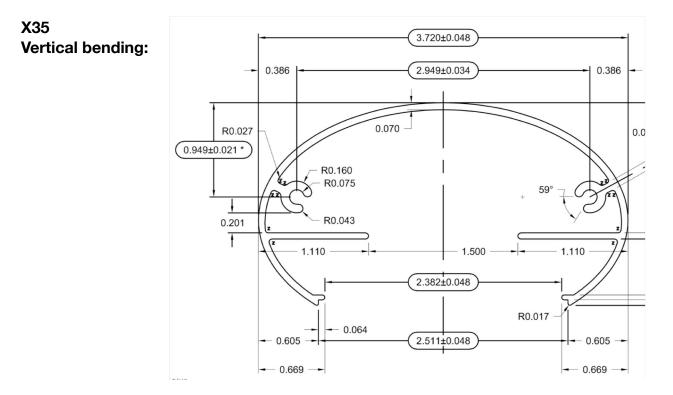
X3 Horizontal loading, Direct Strength Method					
S (in ³)	Z (in ³)	F _e (ksi)	E (ksi)		
0.268	0.334	8333.33	10100		
B _p = F _{cy} (1+(F _{cy} / (1500ksi)) ^{1/3})	$D_p = B_p / 10^* (B_p / E)^{1/2}$	k 1	F _{cy} (ksi)		
31.386	0.175	0.35	25		
k 2	$\lambda_{eq} = \pi (E/F_e)^{1/2}$	$\lambda_1 = (B_p - F_{cy})/D_p$	$\lambda_2 = (\mathbf{k}_1 \mathbf{B}_p) / \mathbf{D}_p$		
2.27	3.459	36.499	62.786		
	For $\lambda_{eq} \leq \lambda_1$	For $\lambda_1 < \lambda_{eq} \le \lambda_2$	For $\lambda_{eq} \geq \lambda_2$		
F _c formula(ksi)	F _{cy}	$B_p-D_p \lambda_{eq}$	$k_2(B_pE)^{1/2}/\lambda_{eq}$		
F _c (ksi) =	25	30.781	369.533		
F _c (ksi) = F _c , controlling	25 F _c /Ω = F _c /1.65	30.781	369.533		
. ,		30.781	369.533		
F _c , controlling 25.0	F_c/Ω = F_c/1.65 15.2	30.781 nd the strength is conti			
F _c , controlling 25.0 If $λ$ _{eq} ≤ $λ$ ₁ local buckli	$F_c/\Omega = F_c/1.65$ 15.2 ng does not control ar		rolled by ZF _y /Ω.		
F _c , controlling 25.0 If $λ$ _{eq} ≤ $λ$ ₁ local buckli	$F_c/\Omega = F_c/1.65$ 15.2 ng does not control ar	nd the strength is conti	rolled by ZF _y /Ω.		

X3 Horizontal				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.268	0.334	10100000	0.002	0.251
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
0	0.268	25000	78	8350

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.32	0.5	0.5	-0.875	-0.4375

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$


 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	32413	24.988	7082	4292
36	16190	35.356	6555	3973
42	12699	39.922	6324	3833
48	10403	44.108	6111	3704
60	7632	51.497	5736	3476
72	6052	57.829	5415	3282

X35 Vertical loading, local buckling of round hollow element under flexural compression

S_c (in ³)	Z (in ³)	R _b (in)	t (in)		
0.245	0.352	2.64	0.07		
$\lambda = (R_{b}/t)^{1/2}$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
6.14119578862991	For $\lambda \le 8.4$, $F_c/\Omega = 27.7$ ksi-0.17 λ				
F₀/Ω (ksi)	For 8.4 < λ < 13.7, F _c / Ω = 18.5-0.593 λ				
22.7	For $\lambda \ge 13.7$, $F_c/\Omega = 3776/(\lambda^2(1+\lambda/35)^2)$				

If $\lambda \le 8.4$, local buckling does not control and the strength is controlled by min(ZF_y/ Ω ,1.5SF_y).

If λ > 8.4, local buckling may control both the local buckling strength (F_c/ Ω *S) and the yielding strength must be assessed.

F _y /Ω (ksi)	ZF _y /Ω(in-kips)	SF_c/Ω (in-kips) (Only applies if > 6.5)	M _a (in-lbs) = min(1.5SF _y /Ω,ZF _y / Ω, SF _c /Ω)*1000
15.2	5.3504	N/A	5350.4

X35 Vertical lo				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.209	0.352	10100000	0.001	0.63
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
-4.51	1.36	25000	78	8800

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.32	0.5	0.5	0	-1.1275

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	46036	18.516	7524	4560
36	21254	27.251	6922	4195
42	15992	31.416	6635	4021
48	12575	35.427	6358	3854
60	8554	42.955	5840	3539
72	6365	49.796	5368	3253

X35 Horizontal loading direct buckling analysis

For local buckling use the continuous strength method. SCIA Engineer is used to create a 3D model of the flange. The model uses a 3rd order non-linear analysis that accounts for large deflections.

The supported edge of the leg is assumed to be able slide in the direction of the length of the top rail. The model uses a 3rd order non-linear analysis that accounts for large deflections and buckling modes. A 72" length of the element is created with a uniform load at one end that is factored until the element is either unable to bear the load or experiences high lateral displacement. The aluminum is assumed to be elastic so the buckling stress found is the elastic buckling stress, F_e, which is used with the provisions of ADM B.5.5.5 to determine the allowable compression stress.

Element area, A_e (in ²)	Total load applied to model, P _{cr} (lbs)	Elastic buckling stress, $F_e = P_{cr}/A_e(psi)$
0.362	5250	14503

X35 Horizontal loading, Direct Strength Method					
S (in ³)	Z (in ³)	F _e (ksi)	E (ksi)		
0.734	0.933	14502.76	10100		
B _p = F _{cy} (1+(F _{cy} / (1500ksi)) ^{1/3})	$D_p = B_p / 10^* (B_p / E)^{1/2}$	k 1	F _{cy} (ksi)		
31.386	0.175	0.35	25		
k 2	$\lambda_{eq} = \pi (E/F_e)^{1/2}$	$\lambda_1 = (B_p - F_{cy})/D_p$	$\lambda_2 = (\mathbf{k}_1 \mathbf{B}_p) / \mathbf{D}_p$		
2.27	2.622	36.499	62.786		
	For $\lambda_{eq} \leq \lambda_1$	For $\lambda_1 < \lambda_{eq} \le \lambda_2$	For $\lambda_{eq} \geq \lambda_2$		
F _c formula(ksi)	F _{cy}	$B_p-D_p \lambda_{eq}$	$k_2(B_pE)^{1/2}/\lambda_{eq}$		
F _c (ksi) =	25	30.927	487.493		
F _c , controlling	$F_c/\Omega = F_c/1.65$				
25.0	15.2				
If $\lambda_{eq} \leq \lambda_1$ local buckling does not control and the strength is controlled by ZF_y/Ω .					
If $\lambda_{eq} > \lambda_1$, local buckling controls and the strength is calculated as F _c / Ω^*S .					
M _a (in-kips)	M _a (in-lbs)				
23.33	23325				

X35 Horizontal				
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)
0.734	0.933	10100000	0.001	0.63
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)
0	0.238	25000	78	23325

Cb	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.32	0.5	0.5	0	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	68167	28.516	19194	11633
36	30926	42.336	17192	10420
42	23016	49.074	16216	9828
48	17879	55.679	15259	9248
60	11829	68.454	13409	8127
72	8531	80.607	11261	6825

X4 TOP RAIL WOOD OR COMPOSITE MATERIAL

Aluminum rail is Alloy 6063 – T6 Aluminum

Aluminum Section I_{xx}: 0.0153 in⁴; I_{yy}: 0.322 in⁴ S_{xx}: 0.0257 in³; S_{yy}: 0.240 in³

Wood – varies G≥ 0.43 1-1/4" x 4" nominal or 1"x3-1/2" true I_{xx} : 0.292in⁴; I_{yy} : 3.57in⁴ C_{xx} : 0.5in; C_{yy} : 1.75in S_{xx} : 0.583in³; S_{yy} : 2.04in³

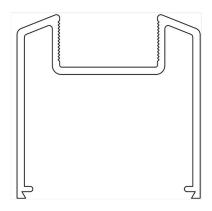
Allowable Stress for aluminum: ADM Table 2-24 $F_T = 15.2 \text{ ksi}$ $F_C \rightarrow 6' \text{ span}$ Rail is braced by wood At 16" o.c. and legs have stiffeners therefore $F_c = 15.2 \text{ ksi}$

 $C_F = 1.5$ and $C_d = 1.6$ Minimum design strength $F_b' = 3,590$ psi Minimum nominal strength = 3,590psi/(1.6*1.5) = 1,500psi Or use 2x4 with nominal strength = 0.583in³/1.313in^{3*}1500psi = 666psi to use at the same max spacing

Allowable Moments → Horiz.= 0.24in³*15,200_{psi} +2.04in³*3,590psi = 11,000"# Vertical load = 0.0257in³ •15,200_{psi} +0.583in³*3,590psi= 2,480"#

Maximum allowable load for 72" o.c. post spacing - Horizontal load (Assumes top rail is supported by picket) $W = 9,940"\#*8/(69.625"^2) = 16.4 \text{ pli} = 197 \text{ plf}$ P = 9,940"#*4/69.625" = 571#Maximum span without load sharing, P = 200# or 50 lf - Vertical load S = 2,410"#*4/200# = 48" clearMax post spacing =48"+2.375" = 50.375" maximum post spacing

COMPOSITES: Composite materials, plastic lumber or similar may be used provided that the size and strength is comparable to the wood.


RAIL SPLICES:

Splice plate strength: Vertical load will be direct bearing from rail/plate to post no bending or shear in plate. Horizontal load will be transferred by shear in the fasteners. Rail to splice plates: #10 Tek screw strength: Check shear @ rail (6063-T6) 2x Furailx dia screw x rail thickness x SF $V = 2.30 \text{ ksi} \cdot 0.19" \cdot 0.09" \cdot 1 =$ 3 (FS) 342#/screw; for two screws = 684#or Furplatex dia screw x plate thickness x SF V= 38 ksi $0.19" \cdot 0.125" \cdot 1 = 301 \#$ /screw; for two screws = 602# 3 (FS) Top rail to splice piece: Splice plate screw shear strength 2x Fuplatex dia screw x plate thickness x SF V= 2.38 ksi 0.19" 0.125" -1 = 602#/screw; for two screws = 1,200# 3 (FS) Check moment from horizontal load: M = P*0.75". For 200# maximum load from a single rail on to splice plates M = 0.75 * 200 = 150 #" $S = 0.075 \text{ in}^3$ $f_b = 150\#''/(0.075) = 2,000 \text{ psi}$

May be used with (2) #10 tek screws per leg, four screws per splice minimum.

Other variations of splice SPLST Stair splice SPL=135 Deg splice

GLASS BOTTOM RAIL

Glass Bottom Rail Horizontal loading, lateral torsional buckling:					
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)	
0.234	0.273	10100000	0.001	0.07	
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)	
-2.03	0.099	25000	78	6825	
Uniform Load of span)	n Simple Span (r	nore conservativ	e than point load	d at center	
C _b	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$	
1.14	0.5	0.5	0	-0.5075	

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_{e} = \pi^{2}EI_{y}/(L_{b}^{2})(U + \sqrt{(U^{2} + 0.038JL_{b}^{2}/I_{y} + C_{w}/I_{y})}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	9961	45.322	5087	3083
36	5343	61.884	4452	2698

42	4329	68.750	4189	2539
48	3651	74.867	3954	2396
60	2808	85.364	3201	1940
72	2306	94.197	2629	1593

Glass bottom rail horizontal loading, Local buckling of flange element supported on one side.

S (in ³)	Z (in ³)	b (in)	t (in)
0.234	0.273	1.53	0.07
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21		
21.8571428571429	For $\lambda \leq 7.3$, $F_c/\Omega = 15.2$ ksi		
F₀/Ω (ksi)	For 7.3 < λ < 12.6, F _c / Ω = 19.0-0.530 λ		
7.09150326797384	For $\lambda \ge 12.6$, $F_c/\Omega = 1$	155/ λ	

If $\lambda \leq 7.3$, local buckling does not control and the strength is controlled by ZF_y/Ω .

If $\lambda > 7.3$, local buckling controls and the strength is calculated as F_c/Ω^*S .

M _a (in-kips)	M _a (in-lbs)	
1.65941176470588	1659	

Max considered span = 72"post spacing - 2.375" post width (in)	Ma(in-lbs)	Max loading is from 50# point load. M _{max} = 50#*L/ 4 (in-lbs)	
69.625	1659	870	< 1,660"# OK

Check max loading on bottom rail: $P_a = min(1,660"\#2*12*12*8/(L^2H) \text{ or } (384*10.1*10^{6*}.205*144*2)/(175*5HL^3)$

Allowable Wind Load on Bottom Rail (psf)				
Bottom Rail Span, L (in)	Glass Infill Height, H (in)			
	33	39	45	
36	89	76	66	
48	50	43	37	
60	32	27	24	
72	21	18	16	

1138

1.13828125

X2 railing requires contribution from the bottom rail for vertical loads when spans are greater than 48".

Glass bottom rail vertical loading, Local buckling of flange element supported on one side.					
S (in ³)	Z (in ³)	b (in)	t (in)		
0.094	0.159	0.896	0.07		
$\lambda = b/t$	Allowable compression stress is calculated according to ADM 2020 Design Table 2-21				
12.8	For $\lambda \leq 7.3$, $F_c/\Omega = 15$	For $\lambda \leq 7.3$, $F_c/\Omega = 15.2$ ksi			
F₀/Ω (ksi)	For 7.3 < λ < 12.6, F _c / Ω = 19.0-0.530 λ				
12.109375	For $\lambda \ge 12.6$, $F_c/\Omega = 155/\lambda$				
If $\lambda \leq 7.3$, local buckling does not control and the strength is controlled by ZF_y/Ω .					
If λ > 7.3, local buckling controls and the strength is calculated as F _c / Ω *S.					
Ma(in-kips)	Ma(in-lbs)				

Glass bottom rail vertical loading, lateral torsional buckling:					
S (in ³)	Z (in ³)	E (psi)	J (in⁴)	C _w (in ⁶)	
0.094	0.159	10100000	0.001	0.07	
β _x (in)	l _y (in⁴)	F _y (psi)	Cc	M _p = ZF _y (in- Ibs)	
0	0.205	25000	78	3975	

C _b	C ₁	C ₂	g₀(in)	$U = C_1 g_0 + C_2 \beta_x / 2$
1.14	0.5	0.5	0	0

F.4.2.5 Any Shape

 $\lambda = \pi \sqrt{(ES/(C_bM_e))}$

 $M_e = \pi^2 E I_y / (L_b^2) (U + \sqrt{(U^2 + 0.038 J L_b^2 / I_y + C_w / I_y)}) \text{ (in-lbs)}$

 $M_{nmb} = M_{np}(1-\lambda/C_c) + \pi^2 E \lambda S_{xc}/C_c^3$ for $\lambda < C_c$ (in-lbs)

 $M_{nmb} = \pi^2 E S_{xc} / \lambda^2$ for $\lambda \ge C_c$ (in-lbs)

Lateral torsional buckling strength varies with unbraced length.

L _b (in)	M _e (in-lbs)	λ	M _{nmb} (in-lbs)	M _{nmb} /Ω (in-lbs)
24	23752	18.602	3394	2057
36	12026	26.143	3159	1914
42	9471	29.459	3055	1852
48	7775	32.513	2960	1794
60	5701	37.970	2790	1691
72	4499	42.745	2641	1600

$$\begin{split} M_a &= 1,600"\# \\ M_a \text{ for } X2 &= 2,480"\# \\ \text{Combined} &= 4,530"\# \\ M_{max} &= 200\#*60"/4 = 3000"\# < 4,080"\# \text{ OK} \end{split}$$